Geometrie Classification of Simplicial Structures on Topologieal Manifolds.
Metod Alif (1982)
Mathematische Annalen
Calegari, Danny (2000)
Electronic Research Announcements of the American Mathematical Society [electronic only]
Stephen Semmes (1996)
Revista Matemática Iberoamericana
A classical problem in geometric topology is to recognize when a topological space is a topological manifold. This paper addresses the question of when a metric space admits a quasisymmetric parametrization by providing examples of spaces with many Eucledian-like properties which are nonetheless substantially different from Euclidean geometry. These examples are geometrically self-similar versions of classical topologically self-similar examples from geometric topology, and they can be realized...
Jabuka, Stanislav (2003)
Algebraic & Geometric Topology
Heil, Wolfgang, Negami, Seiya (1986)
International Journal of Mathematics and Mathematical Sciences
Allan L. Edmonds, Charles Livingston (1983)
Commentarii mathematici Helvetici
Dariusz M. Wilcznski (1988)
Mathematische Annalen
Gabai, David, Kazez, William H. (1998)
Geometry & Topology
Pierre de la Harpe, Jean-Philippe Préaux (2007)
Annales de la faculté des sciences de Toulouse Mathématiques
Nous proposons une caractérisation géométrique des variétés de dimension ayant des groupes fondamentaux dont toutes les classes de conjugaison autres que sont infinies, c’est-à-dire dont les algèbres de von Neumann sont des facteurs de type : ce sont essentiellement les -variétés à groupes fondamentaux infinis qui n’admettent pas de fibration de Seifert. Autrement dit et plus précisément, soient une -variété connexe compacte et son groupe fondamental, qu’on suppose être infini et avec...
Brown, Ronald (2006)
Journal of Homotopy and Related Structures
Niblo, Graham, Reeves, Lawrence (1997)
Geometry & Topology
Hanspeter Fischer, David G. Wright (2003)
Fundamenta Mathematicae
Hass, Rubinstein, and Scott showed that every closed aspherical (irreducible) 3-manifold whose fundamental group contains the fundamental group of a closed aspherical surface, is covered by Euclidean space. This theorem does not generalize to higher dimensions. However, we provide geometric tools with which variations of this theorem can be proved in all dimensions.
Maria Rita Casali, Luca Malagoli (1997)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Paul Baird (1990)
Annales de l'institut Fourier
Harmonic morphisms are considered as a natural generalization of the analytic functions of Riemann surface theory. It is shown that any closed analytic 3-manifold supporting a non-constant harmonic morphism into a Riemann surface must be a Seifert fibre space. Harmonic morphisms from a closed 4-manifold to a 3-manifold are studied. These determine a locally smooth circle action on with possible fixed points. This restricts the topology of . In all cases, a harmonic morphism from a closed...
V. Poénaru, C. Tanasi (1993)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Mady Demdah Kartoue (2011)
Annales de l’institut Fourier
The h-cobordism theorem is a noted theorem in differential and PL topology. A generalization of the h-cobordism theorem for possibly non simply connected manifolds is the so called s-cobordism theorem. In this paper, we prove semialgebraic and Nash versions of these theorems. That is, starting with semialgebraic or Nash cobordism data, we get a semialgebraic homeomorphism (respectively a Nash diffeomorphism). The main tools used are semialgebraic triangulation and Nash approximation.One aspect of...
Kreck, Matthias (2001)
Geometry & Topology
Cannon, J.W., Floyd, W.J., Parry, W.R. (2003)
Algebraic & Geometric Topology
Maher, Joseph (2005)
Geometry & Topology
Gautschi, Ralf, Robbin, Joel W., Salamon, Dietmar A. (2003)
International Journal of Mathematics and Mathematical Sciences