Displaying 41 – 60 of 1237

Showing per page

A homological selection theorem implying a division theorem for Q-manifolds

Taras Banakh, Robert Cauty (2007)

Banach Center Publications

We prove that a space M with Disjoint Disk Property is a Q-manifold if and only if M × X is a Q-manifold for some C-space X. This implies that the product M × I² of a space M with the disk is a Q-manifold if and only if M × X is a Q-manifold for some C-space X. The proof of these theorems exploits the homological characterization of Q-manifolds due to Daverman and Walsh, combined with the existence of G-stable points in C-spaces. To establish the existence of such points we prove (and afterward...

A non-𝒵-compactifiable polyhedron whose product with the Hilbert cube is 𝒵-compactifiable

C. R. Guilbault (2001)

Fundamenta Mathematicae

We construct a locally compact 2-dimensional polyhedron X which does not admit a 𝒵-compactification, but which becomes 𝒵-compactifiable upon crossing with the Hilbert cube. This answers a long-standing question posed by Chapman and Siebenmann in 1976 and repeated in the 1976, 1979 and 1990 versions of Open Problems in Infinite-Dimensional Topology. Our solution corrects an error in the 1990 problem list.

A note on linear mappings between function spaces

Jan Baars (1993)

Commentationes Mathematicae Universitatis Carolinae

Arhangel’skiǐ proved that if X and Y are completely regular spaces such that C p ( X ) and C p ( Y ) are linearly homeomorphic, then X is pseudocompact if and only if Y is pseudocompact. In addition he proved the same result for compactness, σ -compactness and realcompactness. In this paper we prove that if φ : C p ( X ) C p ( X ) is a continuous linear surjection, then Y is pseudocompact provided X is and if φ is a continuous linear injection, then X is pseudocompact provided Y is. We also give examples that both statements do not hold...

Currently displaying 41 – 60 of 1237