On infinite-dimensional manifolds
The notion of locally -incomparable families of compacta was introduced by K. Borsuk [KB]. In this paper we shall construct uncountable locally -incomparable families of different types of finite-dimensional Cantor manifolds.
Let be a non-trivial knot in the -sphere, its exterior, its group, and its peripheral subgroup. We show that is malnormal in , namely that for any with , unless is in one of the following three classes: torus knots, cable knots, and composite knots; these are exactly the classes for which there exist annuli in attached to which are not boundary parallel (Theorem 1 and Corollary 2). More generally, we characterise malnormal peripheral subgroups in the fundamental group of a...
This is a survey of results and open problems on compact 3-manifolds which admit spines corresponding to cyclic presentations of groups. We also discuss questions concerning spines of knot manifolds and regular neighborhoods of homotopically PL embedded compacta in 3-manifolds.
We prove that four manifolds diffeomorphic on the complement of a point have the same Donaldson invariants.
We calculate the structure sets in the sense of surgery theory of total spaces of bundles over eight-dimensional sphere with fibre a seven-dimensional sphere, in which manifolds homotopy equivalent to the total spaces are organized, and we investigate the question, which of the elements in these structure sets can be realized as such bundles.
We present simple examples of finite-dimensional connected homogeneous spaces (they are actually topological manifolds) with nonhomogeneous and nonrigid factors. In particular, we give an elementary solution of an old problem in general topology concerning homogeneous spaces.