Displaying 101 – 120 of 151

Showing per page

An elementary proof of a Lima's theorem for surfaces.

Francisco Javier Turiel Sandín (1989)

Publicacions Matemàtiques

An elementary proof of the following theorem is given:THEOREM. Let M be a compact connected surface without boundary. Consider a C∞ action of Rn on M. Then, if the Euler-Poincaré characteristic of M is non zero there exists a fixed point.

An equivalence criterion for 3-manifolds.

M. R. Casali (1997)

Revista Matemática de la Universidad Complutense de Madrid

Within geometric topology of 3-manifolds (with or without boundary), a representation theory exists, which makes use of 4-coloured graphs. Aim of this paper is to translate the homeomorphism problem for the represented manifolds into an equivalence problem for 4-coloured graphs, by means of a finite number of graph-moves, called dipole moves. Moreover, interesting consequences are obtained, which are related with the same problem in the n-dimensional setting.

An infinitary version of Sperner's Lemma

Aarno Hohti (2006)

Commentationes Mathematicae Universitatis Carolinae

We prove an extension of the well-known combinatorial-topological lemma of E. Sperner to the case of infinite-dimensional cubes. It is obtained as a corollary to an infinitary extension of the Lebesgue Covering Dimension Theorem.

An introduction to the abelian Reidemeister torsion of three-dimensional manifolds

Gwénaël Massuyeau (2011)

Annales mathématiques Blaise Pascal

These notes accompany some lectures given at the autumn school “Tresses in Pau” in October 2009. The abelian Reidemeister torsion for 3 -manifolds, and its refinements by Turaev, are introduced. Some applications, including relations between the Reidemeister torsion and other classical invariants, are surveyed.

Currently displaying 101 – 120 of 151