Free actions on products of spheres: The rational case.
This paper contains a description of various geometric constructions associated with fibre bundles, given in terms of important algebraic object, the “twisting cochain". Our examples include the Chern-Weil classes, the holonomy representation and the so-called cyclic Chern character of Bismut and others (see [2, 11, 27]), also called the Bismut’s class. The later example is the principal one for us, since we are motivated by the attempt to find an algebraic approach to the Witten’s index formula....
Nous calculons dans ce texte l’homologie de l’espace des lacets de l’espace des configurations ordonnées de points dans une variété compacte simplement connexe .
Let be a compact connected oriented surface with one boundary component, and let be the fundamental group of . The Johnson filtration is a decreasing sequence of subgroups of the Torelli group of , whose -th term consists of the self-homeomorphisms of that act trivially at the level of the -th nilpotent quotient of . Morita defined a homomorphism from the -th term of the Johnson filtration to the third homology group of the -th nilpotent quotient of . In this paper, we replace groups...
We extend some results by Goldshtein, Kuzminov, and Shvedov about the -cohomology of warped cylinders to -cohomology for . As an application, we establish some sufficient conditions for the nontriviality of the -torsion of a surface of revolution.
The Mumford conjecture predicts the ring of rational characteristic classes for surface bundles with oriented connected fibers of large genus. The first proof in [11] relied on a number of well known but difficult theorems in differential topology. Most of these difficult ingredients have been eliminated in the years since then. This can be seen particularly in [7] which has a second proof of the Mumford conjecture, and in the work of Galatius [5] which is concerned mainly with a “graph” analogue...
The Evens-Lu-Weinstein representation (Q A, D) for a Lie algebroid A on a manifold M is studied in the transitive case. To consider at the same time non-oriented manifolds as well, this representation is slightly modified to (Q Aor, Dor) by tensoring by orientation flat line bundle, Q Aor=QA⊗or (M) and D or=D⊗∂Aor. It is shown that the induced cohomology pairing is nondegenerate and that the representation (Q Aor, Dor) is the unique (up to isomorphy) line representation for which the top group of...
Let X be a finite CW complex, and ρ: π 1(X) → GL(l, ℂ) a representation. Any cohomology class α ∈ H 1(X, ℂ) gives rise to a deformation γ t of ρ defined by γ t (g) = ρ(g) exp(t〈α, g〉). We show that the cohomology of X with local coefficients γ gen corresponding to the generic point of the curve γ is computable from a spectral sequence starting from H*(X, ρ). We compute the differentials of the spectral sequence in terms of the Massey products and show that the spectral sequence degenerates in case...