C*-algebra of a differential groupoid
Let be a foliated -dimensional manifold with -dimensional foliation . Let be a finite dimensional vector space over . We describe all canonical (-invariant) -valued -forms on the -th order adapted frame bundle of .
We describe all canonical 2-forms Λ(ω) on the r-th order tangent bundle TrM = Jr0 (R;M) of a symplectic manifold (M, ω). As a corollary we deduce that all canonical symplectic structures Λ(ω) on TrM over a symplectic manifold (M, ω) are of the form Λ(ω) = Σrk=0 αkω(k) for all real numbers αk with αr ≠ 0, where ω(k) is the (k)-lift (in the sense of A. Morimoto) of ω to TrM.
We give a classification of canonical tensor fields of type (p,0) on an arbitrary Weil bundle over n-dimensional manifolds under the condition that n ≥ p. Roughly speaking, the result we obtain says that each such canonical tensor field is a sum of tensor products of canonical vector fields on the Weil bundle.
Let Y be a fibered square of dimension (m1, m2, n1, n2). Let V be a finite dimensional vector space over. We describe all 21,m2,n1,n2 - canonical V -valued 1-form Θ TPrA (Y) → V on the r-th order adapted frame bundle PrA(Y).
In this article, we extend Caristi's fixed point theorem, Ekeland's variational principle and Takahashi's maximization theorem to fuzzy metric spaces in the sense of George and Veeramani [A. George , P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems. 64 (1994) 395-399]. Further, a direct simple proof of the equivalences among these theorems is provided.
In this work, we define a partial order on probabilistic metric spaces and establish some new Caristi's fixed point theorems and Ekeland's variational principle for the class of (right) continuous and Archimedean t-norms. As an application, a partial answer to Kirk's problem in metric spaces is given.
We make a case for the unique relevance of Cartan geometry for gauge theories of gravity and supergravity. We introduce our discussion by recapitulating historical threads, providing motivations. In a first part we review the geometry of classical gauge theory, as a background for understanding gauge theories of gravity in terms of Cartan geometry. The second part introduces the basics of the group manifold approach to supergravity, hinting at the deep rooted connections to Cartan supergeometry....