Reduction in contact geometry.
We prove the (first) reduction theorem for general and classical connections, i.e. we prove that any natural operator of a general connection Γ on a fibered manifold and a classical connection Λ on the base manifold can be expressed as a zero order operator of the curvature tensors of Γ and Λ and their appropriate derivatives.
We describe the recent joint work of the author with David M. J. Calderbank and Paul Gauduchon on refined Kato inequalities for sections of vector bundles living in the kernel of natural first-order elliptic operators.
Let H₀ be a regular element of an irreducible Lie algebra , and let be the orbital measure supported on . We show that if and only if k > dim /(dim - rank ).
Cet article considère des équations aux dérivées partielles non linéaires de la forme , , où les sont des champs de vecteur vérifiant la condition de Hörmander. Soit une solution réelle de classe ; on suppose que la localisation de l’opérateur linéarisé sur le groupe de Lie associé au système est hypoelliptique; nous démontrons sous ces hypothèses que est de classe .