Displaying 101 – 120 of 181

Showing per page

Geometry of compactifications of locally symmetric spaces

Lizhen Ji, Robert Macpherson (2002)

Annales de l’institut Fourier

For a locally symmetric space M , we define a compactification M M ( ) which we call the “geodesic compactification”. It is constructed by adding limit points in M ( ) to certain geodesics in M . The geodesic compactification arises in other contexts. Two general constructions of Gromov for an ideal boundary of a Riemannian manifold give M ( ) for locally symmetric spaces. Moreover, M ( ) has a natural group theoretic construction using the Tits building. The geodesic compactification plays two fundamental roles in...

Geometry of control-affine systems.

Clelland, Jeanne N., Moseley, Christopher G., Wilkens, George R. (2009)

SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]

Geometry of Mus-Sasaki metric

Abderrahim Zagane, Mustapha Djaa (2018)

Communications in Mathematics

In this paper, we introduce the Mus-Sasaki metric on the tangent bundle T M as a new natural metric non-rigid on T M . First we investigate the geometry of the Mus-Sasakian metrics and we characterize the sectional curvature and the scalar curvature.

Geometry of non-holonomic diffusion

Simon Hochgerner, Tudor S. Ratiu (2015)

Journal of the European Mathematical Society

We study stochastically perturbed non-holonomic systems from a geometric point of view. In this setting, it turns out that the probabilistic properties of the perturbed system are intimately linked to the geometry of the constraint distribution. For G -Chaplygin systems, this yields a stochastic criterion for the existence of a smooth preserved measure. As an application of our results we consider the motion planning problem for the noisy two-wheeled robot and the noisy snakeboard.

Geometry of oblique projections

E. Andruchow, Gustavo Corach, D. Stojanoff (1999)

Studia Mathematica

Let A be a unital C*-algebra. Denote by P the space of selfadjoint projections of A. We study the relationship between P and the spaces of projections P a determined by the different involutions a induced by positive invertible elements a ∈ A. The maps φ : P P a sending p to the unique q P a with the same range as p and Ω a : P a P a sending q to the unitary part of the polar decomposition of the symmetry 2q-1 are shown to be diffeomorphisms. We characterize the pairs of idempotents q,r ∈ A with ||q-r|| < 1 such that...

Geometry of the free-sliding Bernoulli beam

Giovanni Moreno, Monika Ewa Stypa (2016)

Communications in Mathematics

If a variational problem comes with no boundary conditions prescribed beforehand, and yet these arise as a consequence of the variation process itself, we speak of the free boundary values variational problem. Such is, for instance, the problem of finding the shortest curve whose endpoints can slide along two prescribed curves. There exists a rigorous geometric way to formulate this sort of problems on smooth manifolds with boundary, which we review here in a friendly self-contained way. As an application,...

Geometry of the rolling ellipsoid

Krzysztof Andrzej Krakowski, Fátima Silva Leite (2016)

Kybernetika

We study rolling maps of the Euclidean ellipsoid, rolling upon its affine tangent space at a point. Driven by the geometry of rolling maps, we find a simple formula for the angular velocity of the rolling ellipsoid along any piecewise smooth curve in terms of the Gauss map. This result is then generalised to rolling any smooth hyper-surface. On the way, we derive a formula for the Gaussian curvature of an ellipsoid which has an elementary proof and has been previously known only for dimension two....

Germes de configurations legendriennes stables et fonctions d'Airy-Weber généralisées

Nguyen Hu'u Du'c, Frédéric Pham (1991)

Annales de l'institut Fourier

On sait depuis Maslov, Arnold, etc... associer à presque tout germe de variété lagrangienne ou legendrienne lisse une classe de fonctions oscillantes qui sous des hypothèses génériques à la Thom fournissent des modèles universels pour le comportement d’une onde lumineuse au voisinage de la caustique.Le présent article étend cette construction à une classe de situations où la variété caractéristique est un germe singulier (union de composantes lisses), qui peut néanmoins être stable en ce sens que...

Germes de difféomorphismes et de champs de vecteurs en classe de différentiabilité finie

F. Dumortier, Robert Roussarie (1983)

Annales de l'institut Fourier

Pour tout triplet d’entiers s , k , tels que 0 s k , se pose la question d’étudier les germes de difféomorphismes ou de champs de vecteurs sur R n , de classe , k -déterminés en classe s , c’est-à-dire respectivement conjugués ou équivalents en classe s , à tout germe ayant la même classe et le même k -jet. Cette question est abordée ici, avec quelque généralité en dimension 2 et pour les germes de champs de vecteurs de codimension 2, en dimension 3 et 4. Une conséquence de cette dernière étude est l’existence...

Gerstenhaber and Batalin-Vilkovisky algebras; algebraic, geometric, and physical aspects

Claude Roger (2009)

Archivum Mathematicum

We shall give a survey of classical examples, together with algebraic methods to deal with those structures: graded algebra, cohomologies, cohomology operations. The corresponding geometric structures will be described(e.g., Lie algebroids), with particular emphasis on supergeometry, odd supersymplectic structures and their classification. Finally, we shall explain how BV-structures appear in Quantum Field Theory, as a version of functional integral quantization.

Currently displaying 101 – 120 of 181