Displaying 161 – 180 of 1152

Showing per page

Connections of higher order and product preserving functors

Jacek Gancarzewicz, Noureddine Rahmani, Modesto R. Salgado (2002)

Czechoslovak Mathematical Journal

In this paper we consider a product preserving functor of order r and a connection Γ of order r on a manifold M . We introduce horizontal lifts of tensor fields and linear connections from M to ( M ) with respect to Γ . Our definitions and results generalize the particular cases of the tangent bundle and the tangent bundle of higher order.

Constructions on second order connections

J. Kurek, W. M. Mikulski (2007)

Annales Polonici Mathematici

We classify all m , n -natural operators : J ² J ² V A transforming second order connections Γ: Y → J²Y on a fibred manifold Y → M into second order connections ( Γ ) : V A Y J ² V A Y on the vertical Weil bundle V A Y M corresponding to a Weil algebra A.

Contact elements on fibered manifolds

Ivan Kolář, Włodzimierz M. Mikulski (2003)

Czechoslovak Mathematical Journal

For every product preserving bundle functor T μ on fibered manifolds, we describe the underlying functor of any order ( r , s , q ) , s r q . We define the bundle K k , l r , s , q Y of ( k , l ) -dimensional contact elements of the order ( r , s , q ) on a fibered manifold Y and we characterize its elements geometrically. Then we study the bundle of general contact elements of type μ . We also determine all natural transformations of K k , l r , s , q Y into itself and of T ( K k , l r , s , q Y ) into itself and we find all natural operators lifting projectable vector fields and horizontal one-forms...

Contact geometry of multidimensional Monge-Ampère equations: characteristics, intermediate integrals and solutions

Dmitri V. Alekseevsky, Ricardo Alonso-Blanco, Gianni Manno, Fabrizio Pugliese (2012)

Annales de l’institut Fourier

We study the geometry of multidimensional scalar 2 n d order PDEs (i.e. PDEs with n independent variables), viewed as hypersurfaces in the Lagrangian Grassmann bundle M ( 1 ) over a ( 2 n + 1 ) -dimensional contact manifold ( M , 𝒞 ) . We develop the theory of characteristics of in terms of contact geometry and of the geometry of Lagrangian Grassmannian and study their relationship with intermediate integrals of . After specializing such results to general Monge-Ampère equations (MAEs), we focus our attention to MAEs of...

Contact hamiltonians distinguishing locally certain Goursat systems

Piotr Mormul (2000)

Banach Center Publications

For the first time in dimension 9, the Goursat distributions are not locally smoothly classified by their small growth vector at a point. As shown in [M1], in dimension 9 of the underlying manifold 93 different local behaviours are possible and four irregular pairs of them have coinciding small growth vectors. In the present paper we distinguish geometrically objects in three of those pairs. Smooth functions in three variables - contact hamiltonians in the terminology of Arnold, [A] - help to do...

Continuous transformation groups on spaces

K. Spallek (1991)

Annales Polonici Mathematici

A differentiable group is a group in the category of (reduced and nonreduced) differentiable spaces. Special cases are the rationals ℚ, Lie groups, formal groups over ℝ or ℂ; in general there is some mixture of those types, the general structure, however, is not yet completely determined. The following gives as a corollary a first essential answer. It is shown, more generally,that a locally compact topological transformation group, operating effectively on a differentiable space X (which satisfies...

Coomologia di un campo vettoriale mai nullo

Angela De Sanctis, Giuliano Sorani (1981)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We write a cohomological resolution of the sheaf 𝒮 of solutions of the differential operator / x n on a manifold M and study the cohomology groups H 0 ( M , 𝒮 ) and H 1 ( M , 𝒮 ) .

Currently displaying 161 – 180 of 1152