Maps Without Certain Singularities.
L’étude des familles de courbes plane différentiables se ramène a celle des diagrammesoù est une surface, et étant différentiables. Dans la classification de ces diagrammes à équivalence près il apparaît trois types de modules: des modules locaux attachés à chaque fronce de , des modules semi-locaux attachés à la superposition en un même point de plusieurs situations locales, des modules globaux attachés aux “courbes de contact” le long desquelles certaines courbes sont tangentes. Nous explicitons...
In [24], we studied the singularities of solutions of Monge-Ampère equations of hyperbolic type. Then we saw that the singularities of solutions do not coincide with the singularities of solution surfaces. In this note we first study the singularities of solution surfaces. Next, as the applications, we consider the singularities of surfaces with negative Gaussian curvature. Our problems are as follows: 1) What kinds of singularities may appear?, and 2) How can we extend the surfaces beyond the singularities?...