Periodic points and rotation numbers for area preserving diffeomorphisms of the plane
Let be a closed surface, a compact Lie group, with Lie algebra , and a principal -bundle. In earlier work we have shown that the moduli space of central Yang-Mills connections, with reference to appropriate additional data, is stratified by smooth symplectic manifolds and that the holonomy yields a homeomorphism from onto a certain representation space , in fact a diffeomorphism, with reference to suitable smooth structures and , where denotes the universal central extension of...
We generalize the Malgrange preparation theorem to matrix valued functions satisfying the condition that vanishes to finite order at . Then we can factor near (0,0), where is inversible and is polynomial function of depending on . The preparation is (essentially) unique, up to functions vanishing to infinite order at , if we impose some additional conditions on . We also have a generalization of the division theorem, and analytic versions generalizing the Weierstrass preparation...
Considering jets, or functions, belonging to some strongly non-quasianalytic Carleman class on compact subsets of , we extend them to the whole space with a loss of Carleman regularity. This loss is related to geometric conditions refining Łojasiewicz’s “regular separation” or Whitney’s “property (P)”.
Si est un germe de , on dira que est une pseudo-immersion (on notera ) si tous les germes continus de dans , tels que sont eux-mêmes . On détermine complètement , et on montre que . Par ailleurs, si ou et si est une application de dans telle que et sont , alors est aussi . Si (corps des hamiloniens) alors cette implication n’est plus vraie.