Regular orbital measures on Lie algebras
Let H₀ be a regular element of an irreducible Lie algebra , and let be the orbital measure supported on . We show that if and only if k > dim /(dim - rank ).
Let H₀ be a regular element of an irreducible Lie algebra , and let be the orbital measure supported on . We show that if and only if k > dim /(dim - rank ).
In this Note, we define a class of stratified Lie groups of arbitrary step (that are called “groups of type ” throughout the paper), and we prove that, in these groups, sets with constant intrinsic normal are vertical halfspaces. As a consequence, the reduced boundary of a set of finite intrinsic perimeter in a group of type is rectifiable in the intrinsic sense (De Giorgi’s rectifiability theorem). This result extends the previous one proved by Franchi, Serapioni & Serra Cassano in step...
The integrability condition for the Lagrangian implicit differential systems of (TP,ω̇), introduced in [7], is applied for the specialized control theory systems. The Pontryagin maximum principle was reformulated in the framework of implicit differential systems and the corresponding necessary and sufficient conditions were proved. The beginning of the classification list of normal forms for Lagrangian implicit differential systems according to the symplectic equivalence is provided and the corresponding...
The purpose of this paper is to give an illustration of results on integrability of distributions and orbits of vector fields on Banach manifolds obtained in [5] and [4]. Using arguments and results of these papers, in the context of a separable Hilbert space, we give a generalization of a Theorem of accessibility contained in [3] and [6] for articulated arms and snakes in a finite dimensional Hilbert space.
We prove that the ring ℝ[M] of all polynomials defined on a real algebraic variety is dense in the Hilbert space , where dμ denotes the volume form of M and the Gaussian measure on M.
We study the relationship between derivates and variational measures of additive functions defined on families of figures or bounded sets of finite perimeter. Our results, valid in all dimensions, include a generalization of Ward’s theorem, a necessary and sufficient condition for derivability, and full descriptive definitions of certain conditionally convergent integrals.