Previous Page 2

Displaying 21 – 36 of 36

Showing per page

Regular orbital measures on Lie algebras

Alex Wright (2008)

Colloquium Mathematicae

Let H₀ be a regular element of an irreducible Lie algebra , and let μ H be the orbital measure supported on O H . We show that μ ̂ H k L ² ( ) if and only if k > dim /(dim - rank ).

Regularity of sets with constant intrinsic normal in a class of Carnot groups

Marco Marchi (2014)

Annales de l’institut Fourier

In this Note, we define a class of stratified Lie groups of arbitrary step (that are called “groups of type ” throughout the paper), and we prove that, in these groups, sets with constant intrinsic normal are vertical halfspaces. As a consequence, the reduced boundary of a set of finite intrinsic perimeter in a group of type is rectifiable in the intrinsic sense (De Giorgi’s rectifiability theorem). This result extends the previous one proved by Franchi, Serapioni & Serra Cassano in step...

Singularities of implicit differential systems and maximum principle

Stanisław Janeczko, Fernand Pelletier (2003)

Banach Center Publications

The integrability condition for the Lagrangian implicit differential systems of (TP,ω̇), introduced in [7], is applied for the specialized control theory systems. The Pontryagin maximum principle was reformulated in the framework of implicit differential systems and the corresponding necessary and sufficient conditions were proved. The beginning of the classification list of normal forms for Lagrangian implicit differential systems according to the symplectic equivalence is provided and the corresponding...

Snakes and articulated arms in an Hilbert space

Fernand Pelletier, Rebhia Saffidine (2013)

Annales de la faculté des sciences de Toulouse Mathématiques

The purpose of this paper is to give an illustration of results on integrability of distributions and orbits of vector fields on Banach manifolds obtained in [5] and [4]. Using arguments and results of these papers, in the context of a separable Hilbert space, we give a generalization of a Theorem of accessibility contained in [3] and [6] for articulated arms and snakes in a finite dimensional Hilbert space.

The Gaussian measure on algebraic varieties

Ilka Agricola, Thomas Friedrich (1999)

Fundamenta Mathematicae

We prove that the ring ℝ[M] of all polynomials defined on a real algebraic variety M n is dense in the Hilbert space L 2 ( M , e - | x | 2 d μ ) , where dμ denotes the volume form of M and d ν = e - | x | 2 d μ the Gaussian measure on M.

Variations of additive functions

Zoltán Buczolich, Washek Frank Pfeffer (1997)

Czechoslovak Mathematical Journal

We study the relationship between derivates and variational measures of additive functions defined on families of figures or bounded sets of finite perimeter. Our results, valid in all dimensions, include a generalization of Ward’s theorem, a necessary and sufficient condition for derivability, and full descriptive definitions of certain conditionally convergent integrals.

Currently displaying 21 – 36 of 36

Previous Page 2