Displaying 41 – 60 of 703

Showing per page

Accurate eigenvalue asymptotics for the magnetic Neumann Laplacian

Soeren Fournais, Bernard Helffer (2006)

Annales de l’institut Fourier

Motivated by the theory of superconductivity and more precisely by the problem of the onset of superconductivity in dimension two, many papers devoted to the analysis in a semi-classical regime of the lowest eigenvalue of the Schrödinger operator with magnetic field have appeared recently. Here we would like to mention the works by Bernoff-Sternberg, Lu-Pan, Del Pino-Felmer-Sternberg and Helffer-Morame and also Bauman-Phillips-Tang for the case of a disc. In the present paper we settle one important...

An application of the induction method of V. Pták to the study of regula falsi

Florian-Alexandru Potra (1981)

Aplikace matematiky

In this paper we introduce the notion of " p -dimensional rate of convergence" which generalizes the notion of rate of convergence introduced by V. Pták. Using this notion we give a generalization of the Induction Theorem of V. Pták, which may constitute a basis for the study of the iterative procedures of the form X n + 1 = F ( x n - p + 1 , X n - p + 2 , ... , x n ) , n = 0 , 1 , 2 , ... . As an illustration we apply these results to the study of the convergence of the secant method, obtaining sharp estimates for the errors at each step of the iterative procedure.

An application of the Nash-Moser theorem to ordinary differential equations in Fréchet spaces

M. Poppenberg (1999)

Studia Mathematica

A general existence and uniqueness result of Picard-Lindelöf type is proved for ordinary differential equations in Fréchet spaces as an application of a generalized Nash-Moser implicit function theorem. Many examples show that the assumptions of the main result are natural. Applications are given for the Fréchet spaces C ( K ) , S ( N ) , B ( R N ) , D L 1 ( N ) , for Köthe sequence spaces, and for the general class of subbinomic Fréchet algebras.

Currently displaying 41 – 60 of 703