A global continuation theorem for obtaining eigenvalues and bifurcation points
This paper deals with the analysis of a class of doubly nonlinear evolution equations in the framework of a general metric space. We propose for such equations a suitable metric formulation (which in fact extends the notion of Curve of Maximal Slopefor gradient flows in metric spaces, see [5]), and prove the existence of solutions for the related Cauchy problem by means of an approximation scheme by time discretization. Then, we apply our results to obtain the existence of solutions to abstract...
In this paper, a new approach for fuzzy gyronorms on gyrogroups is presented. The relations between fuzzy metrics(in the sense of Morsi), fuzzy gyronorms, gyronorms on gyrogroups are studied. Also, some sufficient conditions, which can make a fuzzy normed gyrogroup to be a topological gyrogroup and a fuzzy topological gyrogroup, are found. Meanwhile, the relations between topological gyrogroups, fuzzy topological gyrogroups and stratified fuzzy topological gyrogroups are studied. Finally, the properties...
With a chaotic system being divided into linear and nonlinear parts, a new approach is presented to realize generalized chaos synchronization by using feedback control and parameter commutation. Based on a linear transformation, the problem of generalized synchronization (GS) is transformed into the stability problem of the synchronous error system, and an existence condition for GS is derived. Furthermore, the performance of GS can be improved according to the configuration of the GS velocity....