Infinitely many solitary waves in three space dimensions
The existence of infinitely many solutions for a mixed boundary value problem is established. The approach is based on variational methods.
Using Ricceri's variational principle, we establish the existence of infinitely many solutions for a class of two-point boundary value Kirchhoff-type systems.
Under no Ambrosetti-Rabinowitz-type growth condition, we study the existence of infinitely many solutions of the p(x)-Laplacian equations by applying the variant fountain theorems due to Zou [Manuscripta Math. 104 (2001), 343-358].
Using the critical point theory and the method of lower and upper solutions, we present a new approach to obtain the existence of solutions to a -Laplacian impulsive problem. As applications, we get unbounded sequences of solutions and sequences of arbitrarily small positive solutions of the -Laplacian impulsive problem.
Under a suitable oscillatory behavior either at infinity or at zero of the nonlinear term, the existence of infinitely many weak solutions for a non-homogeneous Neumann problem, in an appropriate Orlicz--Sobolev setting, is proved. The technical approach is based on variational methods.
The main purpose of this paper is to present in a unified approach to different results concerning group actions and integrable systems in symplectic, Poisson and contact manifolds. Rigidity problems for integrable systems in these manifolds will be explored from this perspective.