Displaying 81 – 100 of 124

Showing per page

Pseudo-laplaciens II

Yves Colin de Verdière (1983)

Annales de l'institut Fourier

Dans cet article, nous étudions une famille d’opérateurs auto-adjoints Δ a dérivés du laplacien sur une surface de Riemann d’aire finie et ayant au voisinage de l’infini la structure d’un cylindre [ b , + [ × R / Z muni d’une métrique à courbure constante - 1 . Après avoir étudié la théorie spectrale de tels opérateurs, nous donnons, comme application, un théorème prévoyant l’absence générique de valeurs propres immergées dans le spectre continu du laplacien de ces surfaces. Nous montrons enfin comment ceci permet de...

Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach.

Francis Nier (2004)

Journées Équations aux dérivées partielles

We present here a simplified version of recent results obtained with B. Helffer and M. Klein. They are concerned with the exponentally small eigenvalues of the Witten Laplacian on 0 -forms. We show how the Witten complex structure is better taken into account by working with singular values. This provides a convenient framework to derive accurate approximations of the first eigenvalues of Δ f , h ( 0 ) and solves efficiently the question of weakly resonant wells.

Quaternionic contact structures in dimension 7

David Duchemin (2006)

Annales de l’institut Fourier

The conformal infinity of a quaternionic-Kähler metric on a 4 n -manifold with boundary is a codimension 3 distribution on the boundary called quaternionic contact. In dimensions 4 n - 1 greater than 7 , a quaternionic contact structure is always the conformal infinity of a quaternionic-Kähler metric. On the contrary, in dimension 7 , we prove a criterion for quaternionic contact structures to be the conformal infinity of a quaternionic-Kähler metric. This allows us to find the quaternionic-contact structures...

Singular BGG sequences for the even orthogonal case

Lukáš Krump, Vladimír Souček (2006)

Archivum Mathematicum

Locally exact complexes of invariant differential operators are constructed on the homogeneous model for a parabolic geometry for the even orthogonal group. The tool used for the construction is the Penrose transform developed by R. Baston and M. Eastwood. Complexes constructed here belong to the singular infinitesimal character.

Sulle classi di Dolbeault di tipo ( 0 , n - 1 ) con singolarità in un insieme discreto

Paolo Zappa (1981)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

This paper shows how some techniques used for the meromorphic functions of one variable can be used for the explicit construction of a solution to the Mittag-Leffler problem for Dolbeault classes of tipe ( 0 , n - 1 ) with singularities in a discrete set of 𝐂 𝐧 and T n (a n -dimensional complex torus). A generalisation is given for the Weierstrass ζ and the Legendre relations.

Symmetries in finite order variational sequences

Mauro Francaviglia, Marcella Palese, Raffaele Vitolo (2002)

Czechoslovak Mathematical Journal

We refer to Krupka’s variational sequence, i.e. the quotient of the de Rham sequence on a finite order jet space with respect to a ‘variationally trivial’ subsequence. Among the morphisms of the variational sequence there are the Euler-Lagrange operator and the Helmholtz operator. In this note we show that the Lie derivative operator passes to the quotient in the variational sequence. Then we define the variational Lie derivative as an operator on the sheaves of the variational sequence. Explicit...

Currently displaying 81 – 100 of 124