Displaying 81 – 100 of 169

Showing per page

A stochastic approach to relativistic diffusions

Ismaël Bailleul (2010)

Annales de l'I.H.P. Probabilités et statistiques

A new class of relativistic diffusions encompassing all the previously studied examples has recently been introduced in the article of C. Chevalier and F. Debbasch (J. Math. Phys. 49 (2008) 043303), both in a heuristic and analytic way. A stochastic approach of these processes is proposed here, in the general framework of lorentzian geometry. In considering the dynamics of the random motion in strongly causal spacetimes, we are able to give a simple definition of the one-particle distribution function...

A strong maximum principle for the Paneitz operator and a non-local flow for the Q -curvature

Matthew J. Gursky, Andrea Malchiodi (2015)

Journal of the European Mathematical Society

In this paper we consider Riemannian manifolds ( M n , g ) of dimension n 5 , with semi-positive Q -curvature and non-negative scalar curvature. Under these assumptions we prove (i) the Paneitz operator satisfies a strong maximum principle; (ii) the Paneitz operator is a positive operator; and (iii) its Green’s function is strictly positive. We then introduce a non-local flow whose stationary points are metrics of constant positive Q -curvature. Modifying the test function construction of Esposito-Robert, we show...

Abelian analytic torsion and symplectic volume

B.D.K. McLellan (2015)

Archivum Mathematicum

This article studies the abelian analytic torsion on a closed, oriented, Sasakian three-manifold and identifies this quantity as a specific multiple of the natural unit symplectic volume form on the moduli space of flat abelian connections. This identification computes the analytic torsion explicitly in terms of Seifert data.

Currently displaying 81 – 100 of 169