Previous Page 7

Displaying 121 – 132 of 132

Showing per page

Covering lemmas and BMO estimates for eigenfunctions on Riemannian surfaces.

Guozhen Lu (1991)

Revista Matemática Iberoamericana

The principal aim of this note is to prove a covering Lemma in R2. As an application of this covering lemma, we can prove the BMO estimates for eigenfunctions on two-dimensional Riemannian manifolds (M2, g). We will get the upper bound estimate for || log |u| ||BMO, where u is the solution to Δu + λu = 0, for λ > 1 and Δ is the Laplacian on (M2, g). A covering lemma on homogeneous spaces is also obtained in this note.

Cramér's formula for Heisenberg manifolds

Mahta Khosravi, John A. Toth (2005)

Annales de l'institut Fourier

Let R ( λ ) be the error term in Weyl’s law for a 3-dimensional Riemannian Heisenberg manifold. We prove that 1 T | R ( t ) | 2 d t = c T 5 2 + O δ ( T 9 4 + δ ) , where c is a specific nonzero constant and δ is an arbitrary small positive number. This is consistent with the conjecture of Petridis and Toth stating that R ( t ) = O δ ( t 3 4 + δ ) .The idea of the proof is to use the Poisson summation formula to write the error term in a form which can be estimated by the method of the stationary phase. The similar result will be also proven in the 2 n + 1 -dimensional case.

Currently displaying 121 – 132 of 132

Previous Page 7