Previous Page 9

Displaying 161 – 169 of 169

Showing per page

Asymptotic windings over the trefoil knot.

Jacques Franchi (2005)

Revista Matemática Iberoamericana

Consider the group G:=PSL2(R) and its subgroups Γ:= PSL2(Z) and Γ':=DSL2(Z). G/Γ is a canonical realization (up to an homeomorphism) of the complement S3T of the trefoil knot T, and G/Γ' is a canonical realization of the 6-fold branched cyclic cover of S3T, which has a 3-dimensional cohomology of 1-forms.Putting natural left-invariant Riemannian metrics on G, it makes sense to ask which is the asymptotic homology performed by the Brownian motion in G/Γ', describing thereby in an intrinsic way part...

Asymptotics for Bergman-Hodge kernels for high powers of complex line bundles

Robert Berman, Johannes Sjöstrand (2007)

Annales de la faculté des sciences de Toulouse Mathématiques

In this paper we obtain the full asymptotic expansion of the Bergman-Hodge kernel associated to a high power of a holomorphic line bundle with non-degenerate curvature. We also explore some relations with asymptotic holomorphic sections on symplectic manifolds.

Automorphisms of spatial curves

Ivan Bradáč (1997)

Archivum Mathematicum

Automorphisms of curves y = y ( x ) , z = z ( x ) in 𝐑 3 are investigated; i.e. invertible transformations, where the coordinates of the transformed curve y ¯ = y ¯ ( x ¯ ) , z ¯ = z ¯ ( x ¯ ) depend on the derivatives of the original one up to some finite order m . While in the two-dimensional space the problem is completely resolved (the only possible transformations are the well-known contact transformations), the three-dimensional case proves to be much more complicated. Therefore, results (in the form of some systems of partial differential equations...

Averaging method for differential equations perturbed by dynamical systems

Françoise Pène (2002)

ESAIM: Probability and Statistics

In this paper, we are interested in the asymptotical behavior of the error between the solution of a differential equation perturbed by a flow (or by a transformation) and the solution of the associated averaged differential equation. The main part of this redaction is devoted to the ascertainment of results of convergence in distribution analogous to those obtained in [10] and [11]. As in [11], we shall use a representation by a suspension flow over a dynamical system. Here, we make an assumption...

Averaging method for differential equations perturbed by dynamical systems

Françoise Pène (2010)

ESAIM: Probability and Statistics

In this paper, we are interested in the asymptotical behavior of the error between the solution of a differential equation perturbed by a flow (or by a transformation) and the solution of the associated averaged differential equation. The main part of this redaction is devoted to the ascertainment of results of convergence in distribution analogous to those obtained in [10] and [11]. As in [11], we shall use a representation by a suspension flow over a dynamical system. Here, we make an assumption...

Currently displaying 161 – 169 of 169

Previous Page 9