... 1/4
Dans cet article on étudie les -modules dont le support singulier est un croisement normal dans , par l’intermédiaire de la catégorie équivalente de faisceaux pervers. On montre qu’ils sont caractérisés, à isomorphisme près, par la donnée suivante : un hypercube constitué par des espaces vectoriels de dimension finie indexés par les parties de , et des applications linéaires soumises à certaines conditions de commutativité et d’inversibilité. Ce résultat est exprimé sous forme d’une équivalence...
We study the propagation of microlocal analytic singularities for the microdifferential equations with conical refraction studied by R. Melrose and G. Uhlmann. We transform the equations to a simple canonical form 2-microlocaly through quantized bicanonical transformations by Y. Laurent.
A regular spectral triple is proposed for a two-dimensional κ-deformation. It is based on the naturally associated affine group G, a smooth subalgebra of C*(G), and an operator 𝓓 defined by two derivations on this subalgebra. While 𝓓 has metric dimension two, the spectral dimension of the triple is one. This bypasses an obstruction described in [35] on existence of finitely-summable spectral triples for a compactified κ-deformation.