The search session has expired. Please query the service again.

Displaying 1961 – 1980 of 10055

Showing per page

Construction methods for gaussoids

Tobias Boege, Thomas Kahle (2020)

Kybernetika

The number of n -gaussoids is shown to be a double exponential function in n . The necessary bounds are achieved by studying construction methods for gaussoids that rely on prescribing 3 -minors and encoding the resulting combinatorial constraints in a suitable transitive graph. Various special classes of gaussoids arise from restricting the allowed 3 -minors.

Construction of multivariate copulas in n -boxes

José M. González-Barrios, María M. Hernández-Cedillo (2013)

Kybernetika

In this paper we give an alternative proof of the construction of n -dimensional ordinal sums given in Mesiar and Sempi [17], we also provide a new methodology to construct n -copulas extending the patchwork methodology of Durante, Saminger-Platz and Sarkoci in [6] and [7]. Finally, we use the gluing method of Siburg and Stoimenov [20] and its generalization in Mesiar et al. [15] to give an alternative method of patchwork construction of n -copulas, which can be also used in composition with our patchwork...

Construction of multivariate distributions: a review of some recent results.

José María Sarabia, Emilio Gómez-Déniz (2008)

SORT

The construction of multivariate distributions is an active field of research in theoretical and applied statistics. In this paper some recent developments in this field are reviewed. Specifically, we study and review the following set of methods: (a) Construction of multivariate distributions based on order statistics, (b) Methods based on mixtures, (c) Conditionally specified distributions, (d) Multivariate skew distributions, (e) Distributions based on the method of the variables in common and...

Constructions of smooth and analytic cocycles over irrational circle rotations

Dalibor Volný (1995)

Commentationes Mathematicae Universitatis Carolinae

We define a class of step cocycles (which are coboundaries) for irrational rotations of the unit circle and give conditions for their approximation by smooth and real analytic coboundaries. The transfer functions of the approximating (smooth and real analytic) coboundaries are close (in the supremum norm) to the transfer functions of the original ones. This result makes it possible to construct smooth and real analytic cocycles which are ergodic, ergodic and squashable (see [Aaronson, Lemańczyk,...

Constructive quantization: approximation by empirical measures

Steffen Dereich, Michael Scheutzow, Reik Schottstedt (2013)

Annales de l'I.H.P. Probabilités et statistiques

In this article, we study the approximation of a probability measure μ on d by its empirical measure μ ^ N interpreted as a random quantization. As error criterion we consider an averaged p th moment Wasserstein metric. In the case where 2 p l t ; d , we establish fine upper and lower bounds for the error, ahigh resolution formula. Moreover, we provide a universal estimate based on moments, a Pierce type estimate. In particular, we show that quantization by empirical measures is of optimal order under weak assumptions....

Contiguity and LAN-property of sequences of Poisson processes

Friedrich Liese, Udo Lorz (1999)

Kybernetika

Using the concept of Hellinger integrals, necessary and sufficient conditions are established for the contiguity of two sequences of distributions of Poisson point processes with an arbitrary state space. The distribution of logarithm of the likelihood ratio is shown to be infinitely divisible. The canonical measure is expressed in terms of the intensity measures. Necessary and sufficient conditions for the LAN-property are formulated in terms of the corresponding intensity measures.

Continuity of solutions of Riccati equations for the discrete-time JLQP

Adam Czornik, Andrzej Świerniak (2002)

International Journal of Applied Mathematics and Computer Science

The continuity of the solutions of difference and algebraic coupled Riccati equations for the discrete-time Markovian jump linear quadratic control problem as a function of coefficients is verified. The line of reasoning goes through the use of the minimum property formulated analogously to the one for coupled continuous Riccati equations presented by Wonham and a set of comparison theorems.

Continuity of stochastic convolutions

Zdzisław Brzeźniak, Szymon Peszat, Jerzy Zabczyk (2001)

Czechoslovak Mathematical Journal

Let B be a Brownian motion, and let 𝒞 p be the space of all continuous periodic functions f with period 1. It is shown that the set of all f 𝒞 p such that the stochastic convolution X f , B ( t ) = 0 t f ( t - s ) d B ( s ) , t [ 0 , 1 ] does not have a modification with bounded trajectories, and consequently does not have a continuous modification, is of the second Baire category.

Currently displaying 1961 – 1980 of 10055