Displaying 161 – 180 of 425

Showing per page

Hypercontractivity of simple random variables

Paweł Wolff (2007)

Studia Mathematica

The optimal hypercontractivity constant for a natural operator semigroup acting on a discrete finite probability space is established up to a universal factor. The two-point spaces are proved to be the extremal case. The constants obtained are also optimal in the related moment inequalities for sums of independent random variables.

Hyper-dependence, hyper-ageing properties and analogies between them: a semigroup-based approach

Rachele Foschi (2013)

Kybernetika

In previous papers, evolution of dependence and ageing, for vectors of non-negative random variables, have been separately considered. Some analogies between the two evolutions emerge however in those studies. In the present paper, we propose a unified approach, based on semigroup arguments, explaining the origin of such analogies and relations among properties of stochastic dependence and ageing.

Idempotent versions of Haar’s Lemma: links between comparison of discrete event systems with different state spaces and control

Mourad Ahmane, Laurent Truffet (2007)

Kybernetika

Haar's Lemma (1918) deals with the algebraic characterization of the inclusion of polyhedral sets. This Lemma has been involved many times in automatic control of linear dynamical systems via positive invariance of polyhedrons. More recently, it has been used to characterize stochastic comparison w.r.t. linear/integral ordering of Markov (reward) chains. In this paper we develop a state space oriented approach to the control of Discrete Event Systems (DES) based on the remark that most of control...

Inégalité de Brunn-Minkowski-Lusternik, et autres inégalités géométriques et fonctionnelles

Bernard Maurey (2003/2004)

Séminaire Bourbaki

La théorie des corps convexes a commencé à la fin du xixe siècle avec l’inégalité de Brunn, généralisée ensuite sous la forme de l’inégalité de Brunn-Minkowski-Lusternik, qui s’applique à des ensembles non convexes. Ce thème a depuis longtemps des contacts avec les problèmes isopérimétriques et avec des inégalités d’Analyse telle que les plongements de Sobolev. On développera quelques aspects plus récents des inégalités géométriques, dont certains sont liés à la technique du transport de mesure,...

Information-type divergence when the likelihood ratios are bounded

Andrew Rukhin (1997)

Applicationes Mathematicae

The so-called ϕ-divergence is an important characteristic describing "dissimilarity" of two probability distributions. Many traditional measures of separation used in mathematical statistics and information theory, some of which are mentioned in the note, correspond to particular choices of this divergence. An upper bound on a ϕ-divergence between two probability distributions is derived when the likelihood ratio is bounded. The usefulness of this sharp bound is illustrated by several examples of...

Currently displaying 161 – 180 of 425