Asymptotic analysis for bifurcating autoregressive processes via a martingale approach.
We consider a differential equation with a random rapidly varying coefficient. The random coefficient is a gaussian process with slowly decaying correlations and compete with a periodic component. In the asymptotic framework corresponding to the separation of scales present in the problem, we prove that the solution of the differential equation converges in distribution to the solution of a stochastic differential equation driven by a classical brownian motion in some cases, by a fractional brownian...
We consider a differential equation with a random rapidly varying coefficient. The random coefficient is a Gaussian process with slowly decaying correlations and compete with a periodic component. In the asymptotic framework corresponding to the separation of scales present in the problem, we prove that the solution of the differential equation converges in distribution to the solution of a stochastic differential equation driven by a classical Brownian motion in some cases, by a fractional Brownian motion...
Let be a Lévy process started at , with Lévy measure . We consider the first passage time of to level , and the overshoot and the undershoot. We first prove that the Laplace transform of the random triple satisfies some kind of integral equation. Second, assuming that admits exponential moments, we show that converges in distribution as , where denotes a suitable renormalization of .
Let (Xt, t ≥ 0) be a Lévy process started at 0, with Lévy measure ν. We consider the first passage time Tx of (Xt, t ≥ 0) to level x > 0, and Kx := XTx - x the overshoot and Lx := x- XTx- the undershoot. We first prove that the Laplace transform of the random triple (Tx,Kx,Lx) satisfies some kind of integral equation. Second, assuming that ν admits exponential moments, we show that converges in distribution as x → ∞, where denotes a suitable renormalization of Tx.
We prove, by means of Malliavin calculus, the convergence in of some properly renormalized weighted quadratic variations of bi-fractional Brownian motion (biFBM) with parameters and , when and .
We study the asymptotic behaviour, as n → ∞, of the Lebesgue measure of the set for a random k-dimensional subspace E ⊂ ℝⁿ and an isotropic convex body K ⊂ ℝⁿ. For k growing slowly to infinity, we prove it to be close to the suitably normalised Gaussian measure in of a t-dilate of the Euclidean unit ball. Some of the results hold for a wider class of probabilities on ℝⁿ.
We prove asymptotic equipartition properties for simple hierarchical structures (modelled as multitype Galton-Watson trees) and networked structures (modelled as randomly coloured random graphs). For example, for large n, a networked data structure consisting of n units connected by an average number of links of order n / log n can be coded by about H × n bits, where H is an explicitly defined entropy. The main technique in our proofs are large deviation principles for suitably defined empirical...
We prove asymptotic equipartition properties for simple hierarchical structures (modelled as multitype Galton-Watson trees) and networked structures (modelled as randomly coloured random graphs). For example, for large n, a networked data structure consisting of n units connected by an average number of links of order n / log n can be coded by about H × n bits, where H is an explicitly defined entropy. The main technique in our proofs are large deviation principles for suitably defined empirical...
We study large deviations principles for N random processes on the lattice ℤd with finite time horizon [0, β] under a symmetrised measure where all initial and terminal points are uniformly averaged over random permutations. That is, given a permutation σ of N elements and a vector (x1, …, xN) of N initial points we let the random processes terminate in the points (xσ(1), …, xσ(N)) and then sum over all possible permutations and initial points, weighted with an initial distribution. We prove level-two...