Displaying 81 – 100 of 135

Showing per page

The quenched invariance principle for random walks in random environments admitting a bounded cycle representation

Jean-Dominique Deuschel, Holger Kösters (2008)

Annales de l'I.H.P. Probabilités et statistiques

We derive a quenched invariance principle for random walks in random environments whose transition probabilities are defined in terms of weighted cycles of bounded length. To this end, we adapt the proof for random walks among random conductances by Sidoravicius and Sznitman (Probab. Theory Related Fields129 (2004) 219–244) to the non-reversible setting.

The rate of convergence for spectra of GUE and LUE matrix ensembles

Friedrich Götze, Alexander Tikhomirov (2005)

Open Mathematics

We obtain optimal bounds of order O(n −1) for the rate of convergence to the semicircle law and to the Marchenko-Pastur law for the expected spectral distribution functions of random matrices from the GUE and LUE, respectively.

The rate of convergence of option prices when general martingale discrete-time scheme approximates the Black-Scholes model

Yuliya Mishura (2015)

Banach Center Publications

We take the martingale central limit theorem that was established, together with the rate of convergence, by Liptser and Shiryaev, and adapt it to the multiplicative scheme of financial markets with discrete time that converge to the standard Black-Scholes model. The rate of convergence of put and call option prices is shown to be bounded by n - 1 / 8 . To improve the rate of convergence, we suppose that the increments are independent and identically distributed (but without binomial or similar restrictions...

The right tail exponent of the Tracy–Widom β distribution

Laure Dumaz, Bálint Virág (2013)

Annales de l'I.H.P. Probabilités et statistiques

The Tracy–Widom β distribution is the large dimensional limit of the top eigenvalue of β random matrix ensembles. We use the stochastic Airy operator representation to show that as a the tail of the Tracy–Widom distribution satisfies P ( 𝑇𝑊 β g t ; a ) = a - ( 3 / 4 ) β + o ( 1 ) exp - 2 3 β a 3 / 2 .

The unscaled paths of branching brownian motion

Simon C. Harris, Matthew I. Roberts (2012)

Annales de l'I.H.P. Probabilités et statistiques

For a set A ⊂ C[0, ∞), we give new results on the growth of the number of particles in a branching Brownian motion whose paths fall within A. We show that it is possible to work without rescaling the paths. We give large deviations probabilities as well as a more sophisticated proof of a result on growth in the number of particles along certain sets of paths. Our results reveal that the number of particles can oscillate dramatically. We also obtain new results on the number of particles near the...

The weak convergence of regenerative processes using some excursion path decompositions

Amaury Lambert, Florian Simatos (2014)

Annales de l'I.H.P. Probabilités et statistiques

We consider regenerative processes with values in some general Polish space. We define their ε -big excursions as excursions e such that ϕ ( e ) g t ; ε , where ϕ is some given functional on the space of excursions which can be thought of as, e.g., the length or the height of e . We establish a general condition that guarantees the convergence of a sequence of regenerative processes involving the convergence of ε -big excursions and of their endpoints, for all ε in a set whose closure contains 0 . Finally, we provide...

Currently displaying 81 – 100 of 135