The strong law of large numbers for dependent vector processes with decreasing correlation: “Double averaging concept”.
The paper is devoted to some problems concerning a convergence of pointwise type in the -space over a von Neumann algebra M with a faithful normal state Φ [3]. Here is the completion of M under the norm .
For a set A ⊂ C[0, ∞), we give new results on the growth of the number of particles in a branching Brownian motion whose paths fall within A. We show that it is possible to work without rescaling the paths. We give large deviations probabilities as well as a more sophisticated proof of a result on growth in the number of particles along certain sets of paths. Our results reveal that the number of particles can oscillate dramatically. We also obtain new results on the number of particles near the...
We show that the von Neumann algebras generated by an infinite number of t-deformed free gaussian operators are factors of type .
We consider regenerative processes with values in some general Polish space. We define their -big excursions as excursions such that , where is some given functional on the space of excursions which can be thought of as, e.g., the length or the height of . We establish a general condition that guarantees the convergence of a sequence of regenerative processes involving the convergence of -big excursions and of their endpoints, for all in a set whose closure contains . Finally, we provide...