Displaying 21 – 40 of 46

Showing per page

Lacunary Fractional brownian Motion

Marianne Clausel (2012)

ESAIM: Probability and Statistics

In this paper, a new class of Gaussian field is introduced called Lacunary Fractional Brownian Motion. Surprisingly we show that usually their tangent fields are not unique at every point. We also investigate the smoothness of the sample paths of Lacunary Fractional Brownian Motion using wavelet analysis.

Lacunary Fractional Brownian Motion

Marianne Clausel (2012)

ESAIM: Probability and Statistics

In this paper, a new class of Gaussian field is introduced called Lacunary Fractional Brownian Motion. Surprisingly we show that usually their tangent fields are not unique at every point. We also investigate the smoothness of the sample paths of Lacunary Fractional Brownian Motion using wavelet analysis.

Local estimation of the Hurst index of multifractional brownian motion by increment ratio statistic method

Pierre Raphaël Bertrand, Mehdi Fhima, Arnaud Guillin (2013)

ESAIM: Probability and Statistics

We investigate here the central limit theorem of the increment ratio statistic of a multifractional Brownian motion, leading to a CLT for the time varying Hurst index. The proofs are quite simple relying on Breuer–Major theorems and an original freezing of time strategy. A simulation study shows the goodness of fit of this estimator.

Manifold indexed fractional fields

Jacques Istas (2012)

ESAIM: Probability and Statistics

(Local) self-similarity is a seminal concept, especially for Euclidean random fields. We study in this paper the extension of these notions to manifold indexed fields. We give conditions on the (local) self-similarity index that ensure the existence of fractional fields. Moreover, we explain how to identify the self-similar index. We describe a way of simulating Gaussian fractional fields.

Manifold indexed fractional fields∗

Jacques Istas (2012)

ESAIM: Probability and Statistics

(Local) self-similarity is a seminal concept, especially for Euclidean random fields. We study in this paper the extension of these notions to manifold indexed fields. We give conditions on the (local) self-similarity index that ensure the existence of fractional fields. Moreover, we explain how to identify the self-similar index. We describe a way of simulating Gaussian fractional fields.

Milstein’s type schemes for fractional SDEs

Mihai Gradinaru, Ivan Nourdin (2009)

Annales de l'I.H.P. Probabilités et statistiques

Weighted power variations of fractional brownian motion B are used to compute the exact rate of convergence of some approximating schemes associated to one-dimensional stochastic differential equations (SDEs) driven by B. The limit of the error between the exact solution and the considered scheme is computed explicitly.

Moment measures of heavy-tailed renewal point processes: asymptotics and applications

Clément Dombry, Ingemar Kaj (2013)

ESAIM: Probability and Statistics

We study higher-order moment measures of heavy-tailed renewal models, including a renewal point process with heavy-tailed inter-renewal distribution and its continuous analog, the occupation measure of a heavy-tailed Lévy subordinator. Our results reveal that the asymptotic structure of such moment measures are given by explicit power-law density functions. The same power-law densities appear naturally as cumulant measures of certain Poisson and Gaussian stochastic integrals. This correspondence...

Multiparameter multifractional brownian motion : local nondeterminism and joint continuity of the local times

Antoine Ayache, Narn-Rueih Shieh, Yimin Xiao (2011)

Annales de l'I.H.P. Probabilités et statistiques

By using a wavelet method we prove that the harmonisable-type N-parameter multifractional brownian motion (mfBm) is a locally nondeterministic gaussian random field. This nice property then allows us to establish joint continuity of the local times of an (N, d)-mfBm and to obtain some new results concerning its sample path behavior.

On the local time of sub-fractional Brownian motion

Ibrahima Mendy (2010)

Annales mathématiques Blaise Pascal

S H = { S t H , t 0 } be a sub-fractional Brownian motion with H ( 0 , 1 ) . We establish the existence, the joint continuity and the Hölder regularity of the local time L H of S H . We will also give Chung’s form of the law of iterated logarithm for S H . This results are obtained with the decomposition of the sub-fractional Brownian motion into the sum of fractional Brownian motion plus a stochastic process with absolutely continuous trajectories. This decomposition is given by Ruiz de Chavez and Tudor [10].

Smoothness for the collision local time of two multidimensional bifractional Brownian motions

Guangjun Shen, Litan Yan, Chao Chen (2012)

Czechoslovak Mathematical Journal

Let B H i , K i = { B t H i , K i , t 0 } , i = 1 , 2 be two independent, d -dimensional bifractional Brownian motions with respective indices H i ( 0 , 1 ) and K i ( 0 , 1 ] . Assume d 2 . One of the main motivations of this paper is to investigate smoothness of the collision local time T = 0 T δ ( B s H 1 , K 1 - B s H 2 , K 2 ) d s , T > 0 , where δ denotes the Dirac delta function. By an elementary method we show that T is smooth in the sense of Meyer-Watanabe if and only if min { H 1 K 1 , H 2 K 2 } < 1 / ( d + 2 ) .

Stochastic affine evolution equations with multiplicative fractional noise

Bohdan Maslowski, J. Šnupárková (2018)

Applications of Mathematics

A stochastic affine evolution equation with bilinear noise term is studied, where the driving process is a real-valued fractional Brownian motion with Hurst parameter greater than 1 / 2 . Stochastic integration is understood in the Skorokhod sense. The existence and uniqueness of weak solution is proved and some results on the large time dynamics are obtained.

Stochastic calculus with respect to fractional Brownian motion

David Nualart (2006)

Annales de la faculté des sciences de Toulouse Mathématiques

Fractional Brownian motion (fBm) is a centered self-similar Gaussian process with stationary increments, which depends on a parameter H ( 0 , 1 ) called the Hurst index. In this conference we will survey some recent advances in the stochastic calculus with respect to fBm. In the particular case H = 1 / 2 , the process is an ordinary Brownian motion, but otherwise it is not a semimartingale and Itô calculus cannot be used. Different approaches have been introduced to construct stochastic integrals with respect to fBm:...

The fractional mixed fractional brownian motion and fractional brownian sheet

Charles El-Nouty (2007)

ESAIM: Probability and Statistics


We introduce the fractional mixed fractional Brownian motion and fractional Brownian sheet, and investigate the small ball behavior of its sup-norm statistic. Then, we state general conditions and characterize the sufficiency part of the lower classes of some statistics of the above process by an integral test. Finally, when we consider the sup-norm statistic, the necessity part is given by a second integral test.

Universality of the asymptotics of the one-sided exit problem for integrated processes

Frank Aurzada, Steffen Dereich (2013)

Annales de l'I.H.P. Probabilités et statistiques

We consider the one-sided exit problem – also called one-sided barrier problem – for ( α -fractionally) integrated random walks and Lévy processes. Our main result is that there exists a positive, non-increasing function α θ ( α ) such that the probability that any α -fractionally integrated centered Lévy processes (or random walk) with some finite exponential moment stays below a fixed level until time T behaves as T - θ ( α ) + o ( 1 ) for large T . We also investigate when the fixed level can be replaced by a different barrier...

Currently displaying 21 – 40 of 46