Displaying 321 – 340 of 456

Showing per page

An extreme Markovian-evolutionary (EME) sequence.

José Tiago de Oliveira (1985)

Trabajos de Estadística e Investigación Operativa

The most general sequence, with Gumbel margins, generated by maxima procedures in an auto-regressive way (one step) is defined constructively and its properties obtained; some remarks for statistical estimation are presented.

An integral test for the transience of a brownian path with limited local time

Itai Benjamini, Nathanaël Berestycki (2011)

Annales de l'I.H.P. Probabilités et statistiques

We study a one-dimensional brownian motion conditioned on a self-repelling behaviour. Given a nondecreasing positive function f(t), t≥0, consider the measures μt obtained by conditioning a brownian path so that Ls≤f(s), for all s≤t, where Ls is the local time spent at the origin by time s. It is shown that the measures μt are tight, and that any weak limit of μt as t→∞ is transient provided that t−3/2f(t) is integrable. We conjecture that this condition is sharp and present a number of open problems....

An interpolation problem for multivariate stationary sequences

Lutz Klotz (2000)

Kybernetika

Let 𝐗 and 𝐘 be stationarily cross-correlated multivariate stationary sequences. Assume that all values of 𝐘 and all but one values of 𝐗 are known. We determine the best linear interpolation of the unknown value on the basis of the known values and derive a formula for the interpolation error matrix. Our assertions generalize a result of Budinský [1].

An invariance principle in L 2 [ 0 , 1 ] for non stationary ϕ -mixing sequences

Paulo Eduardo Oliveira, Charles Suquet (1995)

Commentationes Mathematicae Universitatis Carolinae

Invariance principle in L 2 ( 0 , 1 ) is studied using signed random measures. This approach to the problem uses an explicit isometry between L 2 ( 0 , 1 ) and a reproducing kernel Hilbert space giving a very convenient setting for the study of compactness and convergence of the sequence of Donsker functions. As an application, we prove a L 2 ( 0 , 1 ) version of the invariance principle in the case of ϕ -mixing random variables. Our result is not available in the D ( 0 , 1 ) -setting.

An iterative implementation of the implicit nonlinear filter

Alexandre J. Chorin, Xuemin Tu (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Implicit sampling is a sampling scheme for particle filters, designed to move particles one-by-one so that they remain in high-probability domains. We present a new derivation of implicit sampling, as well as a new iteration method for solving the resulting algebraic equations.

An iterative implementation of the implicit nonlinear filter

Alexandre J. Chorin, Xuemin Tu (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

Implicit sampling is a sampling scheme for particle filters, designed to move particles one-by-one so that they remain in high-probability domains. We present a new derivation of implicit sampling, as well as a new iteration method for solving the resulting algebraic equations.

Currently displaying 321 – 340 of 456