Page 1 Next

Displaying 1 – 20 of 60

Showing per page

Da Prato-Zabczyk's maximal inequality revisited. I.

Jan Seidler (1993)

Mathematica Bohemica

Existence, uniqueness and regularity of mild solutions to semilinear nonautonomous stochastic parabolic equations with locally lipschitzian nonlinear terms is investigated. The adopted approach is based on the factorization method due to Da Prato, Kwapień and Zabczyk.

Decomposition of two parameter martingales.

David Nualart Rodón (1981)

Stochastica

In this paper we exhibit some decompositions in orthogonal stochastic integrals of two-parameter square integrable martingales adapted to a Brownian sheet which generalize the representation theorem of E. Wong and M. Zakai ([6]). Concretely, a development in a series of multiple stochastic integrals is obtained for such martingales. These results are applied for the characterization of martingales of path independent variation.

Defaultable bonds with an infinite number of Lévy factors

Jacek Jakubowski, Mariusz Niewęgłowski (2010)

Applicationes Mathematicae

A market with defaultable bonds where the bond dynamics is in a Heath-Jarrow-Morton setting and the forward rates are driven by an infinite number of Lévy factors is considered. The setting includes rating migrations driven by a Markov chain. All basic types of recovery are investigated. We formulate necessary and sufficient conditions (generalized HJM conditions) under which the market is arbitrage-free. Connections with consistency conditions are discussed.

Degenerate stochastic differential equations for catalytic branching networks

Sandra Kliem (2009)

Annales de l'I.H.P. Probabilités et statistiques

Uniqueness of the martingale problem corresponding to a degenerate SDE which models catalytic branching networks is proven. This work is an extension of the paper by Dawson and Perkins [Illinois J. Math.50 (2006) 323–383] to arbitrary catalytic branching networks. As part of the proof estimates on the corresponding semigroup are found in terms of weighted Hölder norms for arbitrary networks, which are proven to be equivalent to the semigroup norm for this generalized setting.

Derivative of the Donsker delta functionals

Herry Pribawanto Suryawan (2019)

Mathematica Bohemica

We prove that derivatives of any finite order of Donsker's delta functionals are well-defined elements in the space of Hida distributions. We also show the convergence to the derivative of Donsker's delta functionals of two different approximations. Finally, we present an existence result of finite product and infinite series of the derivative of the Donsker delta functionals.

Detección de M señales gaussianas utilizando el desarrollo modificado de un proceso estocástico.

Jesús Navarro Moreno, Juan Carlos Ruiz Molina (2001)

Qüestiió

Utilizando el desarrollo modificado de un proceso estocástico se propone una nueva metodología, alternativa a la basada en el desarrollo de Karhunen-Loeve, para el problema de detección de M señales Gaussianas en ruido Gaussiano blanco. Las soluciones proporcionadas no presentan el problema del cálculo de los autovalores y autofunciones asociados a la función de covarianza involucrada y son fácilmente implementables desde el punto de vista práctico.

Deterministic characterization of viability for stochastic differential equation driven by fractional brownian motion

Tianyang Nie, Aurel Răşcanu (2012)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, using direct and inverse images for fractional stochastic tangent sets, we establish the deterministic necessary and sufficient conditions which control that the solution of a given stochastic differential equation driven by the fractional Brownian motion evolves in some particular sets K. As a consequence, a comparison theorem is obtained.

Currently displaying 1 – 20 of 60

Page 1 Next