Displaying 981 – 1000 of 1721

Showing per page

On the discretization in time of parabolic stochastic partial differential equations

Jacques Printems (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We first generalize, in an abstract framework, results on the order of convergence of a semi-discretization in time by an implicit Euler scheme of a stochastic parabolic equation. In this part, all the coefficients are globally Lipchitz. The case when the nonlinearity is only locally Lipchitz is then treated. For the sake of simplicity, we restrict our attention to the Burgers equation. We are not able in this case to compute a pathwise order of the approximation, we introduce the weaker notion...

On the discretization in time of parabolic stochastic partial differential equations

Jacques Printems (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We first generalize, in an abstract framework, results on the order of convergence of a semi-discretization in time by an implicit Euler scheme of a stochastic parabolic equation. In this part, all the coefficients are globally Lipchitz. The case when the nonlinearity is only locally Lipchitz is then treated. For the sake of simplicity, we restrict our attention to the Burgers equation. We are not able in this case to compute a pathwise order of the approximation, we introduce the weaker notion...

On the estimation in a class of diffusion-type processes. Aplication for diffusion branching processes.

Manuel Molina Fernández, Aurora Hermoso Carazo (1990)

Extracta Mathematicae

In this work a family of stochastic differential equations whose solutions are multidimensional diffusion-type (non necessarily markovian) processes is considered, and the estimation of a parametric vector θ which relates the coefficients is studied. The conditions for the existence of the likelihood function are proved and the estimator is obtained by continuously observing the process. An application for Diffusion Branching Processes is given. This problem has been studied in some special cases...

On the estimation of the drift coefficient in diffusion processes with random stopping times.

Ramón Gutiérrez Jáimez, Aurora Hermoso Carazo, Manuel Molina Fernández (1986)

Trabajos de Estadística

This paper considers stochastic differential equations with solutions which are multidimensional diffusion processes with drift coefficient depending on a parametric vector θ. By considering a trajectory observed up to a stopping time, the maximum likelihood estimator for θ has been obtained and its consistency and asymptotic normality have been proved.

On the existence and asymptotic behavior of the random solutions of the random integral equation with advancing argument

Henryk Gacki (1996)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

1. Introduction Random Integral Equations play a significant role in characterizing of many biological and engineering problems [4,5,6,7]. We present here new existence theorems for a class of integral equations with advancing argument. Our method is based on the notion of a measure of noncompactness in Banach spaces and the fixed point theorem of Darbo type. We shall deal with random integral equation with advancing argument x ( t , ω ) = h ( t , ω ) + t + δ ( t ) k ( t , τ , ω ) f ( τ , x τ ( ω ) ) d τ , (t,ω) ∈ R⁺ × Ω, (1) where (i) (Ω,A,P) is a complete probability space, (ii)...

On the exponential Orlicz norms of stopped Brownian motion

Goran Peškir (1996)

Studia Mathematica

Necessary and sufficient conditions are found for the exponential Orlicz norm (generated by ψ p ( x ) = e x p ( | x | p ) - 1 with 0 < p ≤ 2) of m a x 0 t τ | B t | or | B τ | to be finite, where B = ( B t ) t 0 is a standard Brownian motion and τ is a stopping time for B. The conditions are in terms of the moments of the stopping time τ. For instance, we find that m a x 0 t τ | B t | ψ 1 < as soon as E ( τ k ) = O ( C k k k ) for some constant C > 0 as k → ∞ (or equivalently τ ψ 1 < ). In particular, if τ ∼ Exp(λ) or | N ( 0 , σ 2 ) | then the last condition is satisfied, and we obtain m a x 0 t τ | B t | ψ 1 K E ( τ ) with some universal constant K > 0....

On the global maximum of the solution to a stochastic heat equation with compact-support initial data

Mohammud Foondun, Davar Khoshnevisan (2010)

Annales de l'I.H.P. Probabilités et statistiques

Consider a stochastic heat equation ∂tu=κ  ∂xx2u+σ(u)ẇ for a space–time white noise ẇ and a constant κ&gt;0. Under some suitable conditions on the initial function u0 and σ, we show that the quantities lim sup t→∞t−1sup x∈Rln El(|ut(x)|2) and lim sup t→∞t−1ln E(sup x∈R|ut(x)|2) are equal, as well as bounded away from zero and infinity by explicit multiples of 1/κ. Our proof works by demonstrating quantitatively that the peaks of the stochastic process x↦ut(x) are highly concentrated...

On the helix equation

Mohamed Hmissi, Imene Ben Salah, Hajer Taouil (2012)

ESAIM: Proceedings

This paper is devoted to the helices processes, i.e. the solutions H : ℝ × Ω → ℝd, (t, ω) ↦ H(t, ω) of the helix equation H ( 0 ) = 0 ; H ( s + t,ω ) = H ( s, Φ ( t,ω ) ) + H ( t,ω ) where Φ : ℝ × Ω → Ω, (t, ω) ↦ Φ(t, ω) is a dynamical system on a measurable space (Ω, ℱ).More precisely, we investigate dominated solutions and non differentiable solutions of the helix equation. For the last case, the Wiener helix plays a fundamental role. Moreover, some relations with the cocycle equation defined...

On the infinite time horizon linear-quadratic regulator problem under a fractional brownian perturbation

Marina L. Kleptsyna, Alain Le Breton, Michel Viot (2005)

ESAIM: Probability and Statistics

In this paper we solve the basic fractional analogue of the classical infinite time horizon linear-quadratic gaussian regulator problem. For a completely observable controlled linear system driven by a fractional brownian motion, we describe explicitely the optimal control policy which minimizes an asymptotic quadratic performance criterion.

On the infinite time horizon linear-quadratic regulator problem under a fractional Brownian perturbation

Marina L. Kleptsyna, Alain Le Breton, Michel Viot (2010)

ESAIM: Probability and Statistics

In this paper we solve the basic fractional analogue of the classical infinite time horizon linear-quadratic Gaussian regulator problem. For a completely observable controlled linear system driven by a fractional Brownian motion, we describe explicitely the optimal control policy which minimizes an asymptotic quadratic performance criterion.

On the Kaczmarz algorithm of approximation in infinite-dimensional spaces

Stanisław Kwapień, Jan Mycielski (2001)

Studia Mathematica

The Kaczmarz algorithm of successive projections suggests the following concept. A sequence ( e k ) of unit vectors in a Hilbert space is said to be effective if for each vector x in the space the sequence (xₙ) converges to x where (xₙ) is defined inductively: x₀ = 0 and x = x n - 1 + α e , where α = x - x n - 1 , e . We prove the effectivity of some sequences in Hilbert spaces. We generalize the concept of effectivity to sequences of vectors in Banach spaces and we prove some results for this more general concept.

Currently displaying 981 – 1000 of 1721