Displaying 1301 – 1320 of 1721

Showing per page

Some Fine Properties of BV Functions on Wiener Spaces

Luigi Ambrosio, Michele Miranda Jr., Diego Pallara (2015)

Analysis and Geometry in Metric Spaces

In this paper we define jump set and approximate limits for BV functions on Wiener spaces and show that the weak gradient admits a decomposition similar to the finite dimensional case. We also define the SBV class of functions of special bounded variation and give a characterisation of SBV via a chain rule and a closure theorem. We also provide a characterisation of BV functions in terms of the short-time behaviour of the Ornstein-Uhlenbeck semigroup following an approach due to Ledoux.

Some fine properties of sets with finite perimeter in Wiener spaces

Michele Miranda Jr. (2014)

Banach Center Publications

In this paper we give a brief overview on the state of art of developments of Geometric Measure Theory in infinite-dimensional Banach spaces. The framework is given by an abstract Wiener space, that is a separable Banach space endowed with a centered Gaussian measure. The focus of the paper is on the theory of sets with finite perimeter and on their properties; this choice was motivated by the fact that most of the good properties of functions of bounded variation can be obtained, thanks to coarea...

Some properties of superprocesses under a stochastic flow

Kijung Lee, Carl Mueller, Jie Xiong (2009)

Annales de l'I.H.P. Probabilités et statistiques

For a superprocess under a stochastic flow in one dimension, we prove that it has a density with respect to the Lebesgue measure. A stochastic partial differential equation is derived for the density. The regularity of the solution is then proved by using Krylov’s Lp-theory for linear SPDE.

Some results on invariant measures in hydrodynamics

B. Ferrario (2000)

Bollettino dell'Unione Matematica Italiana

In questa nota, si presentano risultati di esistenza e di unicità di misure invarianti per l'equazione di Navier-Stokes che governa il moto di un fluido viscoso incomprimibile omogeneo in un dominio bidimensionale soggetto a una forzante che ha due componenti: una deterministica e una di tipo rumore bianco nella variabile temporale.

Some results on stochastic convolutions arising in Volterra equations perturbed by noise

Philippe Clément, Giuseppe Da Prato (1996)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Regularity of stochastic convolutions corresponding to a Volterra equation, perturbed by a white noise, is studied. Under suitable assumptions, hölderianity of the corresponding trajectories is proved.

Currently displaying 1301 – 1320 of 1721