The exit path of a Markov chain with rare transitions
We study the exit path from a general domain after the last visit to a set of a Markov chain with rare transitions. We prove several large deviation principles for the law of the succession of the cycles visited by the process (the cycle path), the succession of the saddle points gone through to jump from cycle to cycle on the cycle path (the saddle path) and the succession of all the points gone through (the exit path). We estimate the time the process spends in each cycle of the cycle path...
Parallel multi-deme genetic algorithms are especially advantageous because they allow reducing the time of computations and can perform a much broader search than single-population ones. However, their formal analysis does not seem to have been studied exhaustively enough. In this paper we propose a mathematical framework describing a wide class of island-like strategies as a stationary Markov chain. Our approach uses extensively the modeling principles introduced by Vose, Rudolph and their collaborators....
The logarithmic Sobolev constant is always bounded above by half the spectral gap. It is natural to ask when this inequality is an equality. We consider this question in the context of reversible Markov chains on small finite state spaces. In particular, we prove that equality holds for simple random walk on the five cycle and we discuss assorted families of chains on three and four points.
Evolutionary Algorithms, also known as Genetic Algorithms in a former terminology, are probabilistic algorithms for optimization, which mimic operators from natural selection and genetics. The paper analyses the convergence of the heuristic associated to a special type of Genetic Algorithm, namely the Steady State Genetic Algorithm (SSGA), considered as a discrete-time dynamical system non-generational model. Inspired by the Markov chain results in finite Evolutionary Algorithms, conditions are...
We present a transformation for stochastic matrices and analyze the effects of using it in stochastic comparison with the strong stochastic (st) order. We show that unless the given stochastic matrix is row diagonally dominant, the transformed matrix provides better st bounds on the steady state probability distribution.
We present a transformation for stochastic matrices and analyze the effects of using it in stochastic comparison with the strong stochastic (st) order. We show that unless the given stochastic matrix is row diagonally dominant, the transformed matrix provides better st bounds on the steady state probability distribution.