Characterizations of embeddable stochastic matrices with a negative eigenvalue.
The paper is motivated by the stochastic comparison of the reliability of non-repairable -out-of- systems. The lifetime of such a system with nonidentical components is compared with the lifetime of a system with identical components. Formally the problem is as follows. Let be positive independent random variables with common distribution . For and , let consider and . Remark that this is no more than a change of scale for each term. For let us define to be the th order statistics...
The paper is motivated by the stochastic comparison of the reliability of non-repairable k-out-of-n systems. The lifetime of such a system with nonidentical components is compared with the lifetime of a system with identical components. Formally the problem is as follows. Let Ui,i = 1,...,n, be positive independent random variables with common distribution F. For λi > 0 and µ > 0, let consider Xi = Ui/λi and Yi = Ui/µ, i = 1,...,n. Remark that this is no more than a change of scale for each...
In this paper we study finite state conditional Markov chains (CMCs). We give two examples of CMCs, one which admits intensity, and another one, which does not admit an intensity. We also give a sufficient condition under which a doubly stochastic Markov chain is a CMC. In addition we provide a method for construction of conditional Markov chains via change of measure.
Motivated by the recent development in the theory of jump processes, we investigate its conservation property. We will show that a jump process is conservative under certain conditions for the volume-growth of the underlying space and the jump rate of the process. We will also present examples of jump processes which satisfy these conditions.
This paper focuses on the constrained optimality of discrete-time Markov decision processes (DTMDPs) with state-dependent discount factors, Borel state and compact Borel action spaces, and possibly unbounded costs. By means of the properties of so-called occupation measures of policies and the technique of transforming the original constrained optimality problem of DTMDPs into a convex program one, we prove the existence of an optimal randomized stationary policies under reasonable conditions.
If is the combinatorial Laplacian of a graph, converges to a matrix with identical coefficients. The speed of convergence is measured by the maximal entropy distance. When the graph is the sum of a large number of components, a cut-off phenomenon may occur: before some instant the distance to equilibrium tends to infinity; after that instant it tends to . A sufficient condition for cut-off is given, and the cut-off instant is expressed as a function of the gap and eigenvectors of components....
We study the convergence to equilibrium of n-samples of independent Markov chains in discrete and continuous time. They are defined as Markov chains on the n-fold Cartesian product of the initial state space by itself, and they converge to the direct product of n copies of the initial stationary distribution. Sharp estimates for the convergence speed are given in terms of the spectrum of the initial chain. A cutoff phenomenon occurs in the sense that as n tends to infinity, the total variation...