Quasi-compactness and uniform ergodicity of Markov operators
In this paper we study a random walk on an affine building of type Ãr, whose radial part, when suitably normalized, converges toward the brownian motion of the Weyl chamber. This gives a new discrete approximation of this process, alternative to the one of Biane (Probab. Theory Related Fields89 (1991) 117–129). This extends also the link at the probabilistic level between riemannian symmetric spaces of the noncompact type and their discrete counterpart, which had been previously discovered by Bougerol...
Des semi-groupes de Feller locaux, deux à deux compatibles et définis sur des ouverts recouvrant un espace compact , se recollent en un semi-groupe de Feller local unique défini sur . Le principe du maximum joue un rôle essentiel dans la démonstration de ce résultat. Un théorème de recollement des générateurs infinitésimaux s’en déduit.
The properties of a certain generalization of simple random walk to continuous time are analyzed in this paper. After the definition, its transition probabilities, and the differential equations satisfied by those, are obtained. Under some conditions, the convergence of this random walk to a Wiener process is then established. Finally, absorption probabilities and mean times until absorption are calculated, giving some insight into the behaviour of the process.
The aim of the paper is two-fold. First, we investigate the ψ-Bessel potential spaces on and study some of their properties. Secondly, we consider the fractional powers of an operator of the form , , where is an operator with real continuous negative definite symbol ψ: ℝⁿ → ℝ. We define the domain of the operator and prove that with this domain it generates an -sub-Markovian semigroup.
Let be a locally compact Hausdorff space. Let , i = 0,1,...,N, be generators of Feller semigroups in C₀() with related Feller processes and let , i = 0,...,N, be non-negative continuous functions on with . Assume that the closure A of defined on generates a Feller semigroup T(t), t ≥ 0 in C₀(). A natural interpretation of a related Feller process X = X(t), t ≥ 0 is that it evolves according to the following heuristic rules: conditional on being at a point p ∈ , with probability , the process...
We study one-dimensional Lévy processes with Lévy-Khintchine exponent ψ(ξ²), where ψ is a complete Bernstein function. These processes are subordinate Brownian motions corresponding to subordinators whose Lévy measure has completely monotone density; or, equivalently, symmetric Lévy processes whose Lévy measure has completely monotone density on (0,∞). Examples include symmetric stable processes and relativistic processes. The main result is a formula for the generalized eigenfunctions of transition...
Let be a -symmetric Hunt process on a LCCB space . For an open set , let be the exit time of from and be the generator of the process killed when it leaves . Let and . We give necessary and sufficient conditions for in terms of the behavior near the origin of the spectral measure of . When , , by means of this condition we derive the Nash inequality for the killed process. In the diffusion case this permits to show that the existence of moments of order for implies the...
Let X be a regular continuous positively recurrent Markov process with state space ℝ, scale function S and speed measure m. For a∈ℝ denote Ba+=supx≥am(]x, +∞[)(S(x)−S(a)), Ba−=supx≤am(]−∞; x[)(S(a)−S(x)). It is well known that the finiteness of Ba± is equivalent to the existence of spectral gaps of generators associated with X. We show how these quantities appear independently in the study of the exponential moments of hitting times of X. Then we establish a very direct relation between exponential...