Displaying 41 – 60 of 72

Showing per page

Pathwise differentiability for SDEs in a convex polyhedron with oblique reflection

Sebastian Andres (2009)

Annales de l'I.H.P. Probabilités et statistiques

In this paper, the object of study is a Skorohod SDE in a convex polyhedron with oblique reflection at the boundary. We prove that the solution is pathwise differentiable with respect to its deterministic starting point up to the time when two of the faces are hit simultaneously. The resulting derivatives evolve according to an ordinary differential equation, when the process is in the interior of the polyhedron, and they are projected to the tangent space, when the process hits the boundary, while...

Poisson boundary of triangular matrices in a number field

Bruno Schapira (2009)

Annales de l’institut Fourier

The aim of this note is to describe the Poisson boundary of the group of invertible triangular matrices with coefficients in a number field. It generalizes to any dimension and to any number field a result of Brofferio concerning the Poisson boundary of random rational affinities.

Probabilistic Approach to the Neumann Problem for a Symmetric Operator

Benchérif-Madani, Abdelatif (2009)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: Primary 60J45, 60J50, 35Cxx; Secondary 31Cxx.We give a probabilistic formula for the solution of a non-homogeneous Neumann problem for a symmetric nondegenerate operator of second order in a bounded domain. We begin with a g-Hölder matrix and a C^1,g domain, g > 0, and then consider extensions. The solutions are expressed as a double layer potential instead of a single layer potential; in particular a new boundary function is discovered and boundary random...

Random walks on co-compact fuchsian groups

Sébastien Gouëzel, Steven P. Lalley (2013)

Annales scientifiques de l'École Normale Supérieure

It is proved that the Green’s function of a symmetric finite range random walk on a co-compact Fuchsian group decays exponentially in distance at the radius of convergence R . It is also shown that Ancona’s inequalities extend to  R , and therefore that the Martin boundary for  R -potentials coincides with the natural geometric boundary S 1 , and that the Martin kernel is uniformly Hölder continuous. Finally, this implies a local limit theorem for the transition probabilities: in the aperiodic case, p n ( x , y ) C x , y R - n n - 3 / 2 .

Sur l'existence de processus de diffusion

Kazuaki Taira (1979)

Annales de l'institut Fourier

Dans cet article, on considère le problème de l’existence de processus de diffusion satisfaisant aux conditions aux limites introduites par Ventcel’ et on donne des conditions suffisantes, en généralisant des résultats de Bony-Courrège-Priouret au cas où les conditions aux limites sont non-coercives.

The boundary Harnack principle for the fractional Laplacian

Krzysztof Bogdan (1997)

Studia Mathematica

We study nonnegative functions which are harmonic on a Lipschitz domain with respect to symmetric stable processes. We prove that if two such functions vanish continuously outside the domain near a part of its boundary, then their ratio is bounded near this part of the boundary.

The infinite valley for a recurrent random walk in random environment

Nina Gantert, Yuval Peres, Zhan Shi (2010)

Annales de l'I.H.P. Probabilités et statistiques

We consider a one-dimensional recurrent random walk in random environment (RWRE). We show that the – suitably centered – empirical distributions of the RWRE converge weakly to a certain limit law which describes the stationary distribution of a random walk in an infinite valley. The construction of the infinite valley goes back to Golosov, see Comm. Math. Phys.92 (1984) 491–506. As a consequence, we show weak convergence for both the maximal local time and the self-intersection local time of the...

Currently displaying 41 – 60 of 72