Changement de temps d'un processus markovien additif
In this note we prove that the Local Time at zero for a multiparametric Wiener process belongs to the Sobolev space Dk - 1/2 - ε,2 for any ε > 0. We do this computing its Wiener chaos expansion. We see also that this expansion converges almost surely. Finally, using the same technique we prove similar results for a renormalized Local Time for the autointersections of a planar Brownian motion.
We study γk(x2, …, xk; t), the k-fold renormalized self-intersection local time for brownian motion in R1. Our main result says that γk(x2, …, xk; t) is continuously differentiable in the spatial variables, with probability 1.