Page 1

Displaying 1 – 14 of 14

Showing per page

Pathwise differentiability for SDEs in a convex polyhedron with oblique reflection

Sebastian Andres (2009)

Annales de l'I.H.P. Probabilités et statistiques

In this paper, the object of study is a Skorohod SDE in a convex polyhedron with oblique reflection at the boundary. We prove that the solution is pathwise differentiable with respect to its deterministic starting point up to the time when two of the faces are hit simultaneously. The resulting derivatives evolve according to an ordinary differential equation, when the process is in the interior of the polyhedron, and they are projected to the tangent space, when the process hits the boundary, while...

PDE's for the Dyson, Airy and Sine processes

Mark Adler (2005)

Annales de l’institut Fourier

In 1962, Dyson showed that the spectrum of a n × n random Hermitian matrix, whose entries (real and imaginary) diffuse according to n 2 independent Ornstein-Uhlenbeck processes, evolves as n non-colliding Brownian particles held together by a drift term. When n , the largest eigenvalue, with time and space properly rescaled, tends to the so-called Airy process, which is a non-markovian continuous stationary process. Similarly the eigenvalues in the bulk, with a different time and space rescaling, tend...

Pénalisations de l’araignée brownienne

Joseph Najnudel (2007)

Annales de l’institut Fourier

Dans cet article, nous pénalisons la loi d’une araignée brownienne ( A t ) t 0 prenant ses valeurs dans un ensemble fini E de demi-droites concourantes, avec un poids égal à 1 Z t exp ( α N t X t + γ L t ) , où t est un réel positif, ( α k ) k E une famille de réels indexés par E , γ un paramètre réel, X t la distance de A t à l’origine, N t ( E ) la demi-droite sur laquelle se trouve A t , L t le temps local de ( X s ) 0 s t à l’origine, et Z t la constante de normalisation. Nous montrons que la famille des mesures de probabilité obtenue par ces pénalisations converge vers...

Penalized nonparametric drift estimation for a continuously observed one-dimensional diffusion process

Eva Löcherbach, Dasha Loukianova, Oleg Loukianov (2011)

ESAIM: Probability and Statistics

Let X be a one dimensional positive recurrent diffusion continuously observed on [0,t] . We consider a non parametric estimator of the drift function on a given interval. Our estimator, obtained using a penalized least square approach, belongs to a finite dimensional functional space, whose dimension is selected according to the data. The non-asymptotic risk-bound reaches the minimax optimal rate of convergence when t → ∞. The main point of our work is that we do not suppose the process to be in...

Penalized nonparametric drift estimation for a continuously observed one-dimensional diffusion process

Eva Löcherbach, Dasha Loukianova, Oleg Loukianov (2012)

ESAIM: Probability and Statistics

Let X be a one dimensional positive recurrent diffusion continuously observed on [0,t] . We consider a non parametric estimator of the drift function on a given interval. Our estimator, obtained using a penalized least square approach, belongs to a finite dimensional functional space, whose dimension is selected according to the data. The non-asymptotic risk-bound reaches the minimax optimal rate of convergence when t → ∞. The main point of our work is that we do not suppose the process to be in...

Polynomial bounds in the Ergodic theorem for one-dimensional diffusions and integrability of hitting times

Eva Löcherbach, Dasha Loukianova, Oleg Loukianov (2011)

Annales de l'I.H.P. Probabilités et statistiques

Let X be a one-dimensional positive recurrent diffusion with initial distribution ν and invariant probability μ. Suppose that for some p>1, ∃a∈ℝ such that ∀x∈ℝ, and , where Ta is the hitting time of a. For such a diffusion, we derive non-asymptotic deviation bounds of the form ℙν(|(1/t)∫0tf(Xs) ds−μ(f)|≥ε)≤K(p)(1/tp/2)(1/εp)A(f)p. Here f bounded or bounded and compactly supported and A(f)=‖f‖∞ when f is bounded and A(f)=μ(|f|) when f is bounded and compactly supported. We also give, under...

Polynomial deviation bounds for recurrent Harris processes having general state space

Eva Löcherbach, Dasha Loukianova (2013)

ESAIM: Probability and Statistics

Consider a strong Markov process in continuous time, taking values in some Polish state space. Recently, Douc et al. [Stoc. Proc. Appl. 119, (2009) 897–923] introduced verifiable conditions in terms of a supermartingale property implying an explicit control of modulated moments of hitting times. We show how this control can be translated into a control of polynomial moments of abstract regeneration times which are obtained by using the regeneration method of Nummelin, extended to the time-continuous...

Problèmes de recouvrement et points exceptionnels pour la marche aléatoire et le mouvement brownien

Zhan Shi (2004/2005)

Séminaire Bourbaki

La marche aléatoire (ou marche au hasard) est un objet fondamental de la théorie des probabilités. Un des problèmes les plus intéressants pour la marche aléatoire (ainsi que pour le mouvement brownien, son analogue dans un contexte continu) est de savoir comment elle recouvre des ensembles où se trouvent les points qui sont souvent (ou au contraire, rarement) visités, et combien il y a de tels points. Les travaux de Dembo, Peres, Rosen et Zeitouni permettent de résoudre plusieurs conjectures importantes...

Currently displaying 1 – 14 of 14

Page 1