is not a semimartingale
Page 1 Next
Martin T. Barlow (1982)
Séminaire de probabilités de Strasbourg
Richard F. Bass (1987)
Séminaire de probabilités de Strasbourg
Jacques Azéma, K. Hamza (1989)
Séminaire de probabilités de Strasbourg
N. Gantert, O. Zeitouni (1998)
Annales de l'I.H.P. Probabilités et statistiques
Pierre Pudlo (2010)
ESAIM: Probability and Statistics
To establish lists of words with unexpected frequencies in long sequences, for instance in a molecular biology context, one needs to quantify the exceptionality of families of word frequencies in random sequences. To this aim, we study large deviation probabilities of multidimensional word counts for Markov and hidden Markov models. More specifically, we compute local Edgeworth expansions of arbitrary degrees for multivariate partial sums of lattice valued functionals of finite Markov...
Chen, Xia, Li, Wenbo V., Rosen, Jay (2005)
Electronic Journal of Probability [electronic only]
Csáki, Endre, Shi, Zhan (1998)
Electronic Journal of Probability [electronic only]
Michael B. Marcus, Jay Rosen (1994)
Annales de l'I.H.P. Probabilités et statistiques
Marc Yor (1983)
Séminaire de probabilités de Strasbourg
Sophie Weinryb, Marc Yor (1988)
Séminaire de probabilités de Strasbourg
Pierre Vallois (1983)
Séminaire de probabilités de Strasbourg
Maurizio Pratelli (1979)
Séminaire de probabilités de Strasbourg
Nicole El Karoui, Paul-André Meyer (1977)
Séminaire de probabilités de Strasbourg
Paul-André Meyer (1974)
Séminaire de probabilités de Strasbourg
Khoshnevisan, Davar (1996)
Electronic Journal of Probability [electronic only]
P. J. Fitzsimmons, R. K. Getoor (1992)
Annales de l'I.H.P. Probabilités et statistiques
Patrick Cattiaux, Mawaki Manou-Abi (2014)
ESAIM: Probability and Statistics
Consider an irreducible, aperiodic and positive recurrent discrete time Markov chain (Xn,n ≥ 0) with invariant distribution μ. We shall investigate the long time behaviour of some functionals of the chain, in particular the additive functional S n = ∑ i = 1 n f ( X i ) for a possibly non square integrable functionf. To this end we shall link ergodic properties of the chain to mixing properties, extending known results in the continuous time case. We will then use existing results of convergence...
Déborah Ferré, Loïc Hervé, James Ledoux (2012)
Annales de l'I.H.P. Probabilités et statistiques
Let be a discrete or continuous-time Markov process with state space where is an arbitrary measurable set. Its transition semigroup is assumed to be additive with respect to the second component, i.e. is assumed to be a Markov additive process. In particular, this implies that the first component is also a Markov process. Markov random walks or additive functionals of a Markov process are special instances of Markov additive processes. In this paper, the process is shown to satisfy the...
Dogan Çömez (1989)
Colloquium Mathematicae
Mathieu Merle (2006)
Annales de l'I.H.P. Probabilités et statistiques
Page 1 Next