Displaying 421 – 440 of 444

Showing per page

Uniform deterministic equivalent of additive functionals and non-parametric drift estimation for one-dimensional recurrent diffusions

D. Loukianova, O. Loukianov (2008)

Annales de l'I.H.P. Probabilités et statistiques

Usually the problem of drift estimation for a diffusion process is considered under the hypothesis of ergodicity. It is less often considered under the hypothesis of null-recurrence, simply because there are fewer limit theorems and existing ones do not apply to the whole null-recurrent class. The aim of this paper is to provide some limit theorems for additive functionals and martingales of a general (ergodic or null) recurrent diffusion which would allow us to have a somewhat unified approach...

Uniqueness of Brownian motion on Sierpiński carpets

Martin Barlow, Richard F. Bass, Takashi Kumagai, Alexander Teplyaev (2010)

Journal of the European Mathematical Society

We prove that, up to scalar multiples, there exists only one local regular Dirichlet form on a generalized Sierpi´nski carpet that is invariant with respect to the local symmetries of the carpet. Consequently, for each such fractal the law of Brownian motion is uniquely determined and the Laplacian is well defined.

Where does randomness lead in spacetime?

Ismael Bailleul, Albert Raugi (2010)

ESAIM: Probability and Statistics

We provide an alternative algebraic and geometric approach to the results of [I. Bailleul, Probab. Theory Related Fields141 (2008) 283–329] describing the asymptotic behaviour of the relativistic diffusion.

Currently displaying 421 – 440 of 444