The search session has expired. Please query the service again.
Consider a one dimensional nonlinear reaction-diffusion equation
(KPP equation) with non-homogeneous second order term, discontinuous
initial condition and small parameter. For points ahead
of the Freidlin-KPP front, the solution tends to 0 and we obtain
sharp asymptotics (i.e. non logarithmic). Our study follows the
work of Ben Arous and Rouault who solved this problem in the
homogeneous case. Our proof is probabilistic, and is based on
the Feynman-Kac formula and the large deviation principle...
We start with a general time-homogeneous scalar diffusion whose state space is an interval I ⊆ ℝ. If it is started at x ∈ I, then we consider the problem of imposing upper and/or lower boundary conditions at two points a,b ∈ I, where a < x < b. Using a simple integral identity, we derive general expressions for the Laplace transform of the transition density of the process, if killing or reflecting boundaries are specified. We also obtain a number of useful expressions for the Laplace transforms...
The brownian web (BW), which developed from the work of Arratia and then Tóth and Werner, is a random collection of paths (with specified starting points) in one plus one dimensional space–time that arises as the scaling limit of the discrete web (DW) of coalescing simple random walks. Two recently introduced extensions of the BW, the brownian net (BN) constructed by Sun and Swart, and the dynamical brownian web (DyBW) proposed by Howitt and Warren, are (or should be) scaling limits of corresponding...
Two main approaches have been considered for modelling the dynamics of the SIS model on
complex metapopulations, i.e, networks of populations connected by migratory flows whose
configurations are described in terms of the connectivity distribution of nodes (patches)
and the conditional probabilities of connections among classes of nodes sharing the same
degree. In the first approach migration and transmission/recovery process alternate
sequentially,...
In this paper a multi-scaled diffusion-approximation theorem
is proved so as to unify various applications in wave propagation
in random media: transmission of optical modes through random
planar waveguides; time delay in scattering for the linear wave
equation; decay of the transmission coefficient for large lengths
with fixed output and phase difference in weakly nonlinear random
media.
We develop the analogy between self-gravitating Brownian particles and bacterial populations. In the high friction limit, the self-gravitating Brownian gas is described by the Smoluchowski-Poisson system. These equations can develop a self-similar collapse leading to a finite time singularity. Coincidentally, the Smoluchowski-Poisson system corresponds to a simplified version of the Keller-Segel model of bacterial populations. In this biological context, it describes the chemotactic aggregation...
We propose new copulae to model the dependence between two Brownian motions and to control the distribution of their difference. Our approach is based on the copula between the Brownian motion and its reflection. We show that the class of admissible copulae for the Brownian motions are not limited to the class of Gaussian copulae and that it also contains asymmetric copulae. These copulae allow for the survival function of the difference between two Brownian motions to have higher value in the right...
We derive a model based on the structure of dependence between a Brownian motion and its reflection according to a barrier. The structure of dependence presents two states of correlation: one of comonotonicity with a positive correlation and one of countermonotonicity with a negative correlation. This model of dependence between two Brownian motions B1 and B2 allows for the value of [...] to be higher than 1/2 when x is close to 0, which is not the case when the dependence is modeled by a constant...
Currently displaying 21 –
40 of
55