Telegraph models of financial markets.
First, noncompact Cantor sets along with their defining trees are introduced as a natural generalization of -adic numbers. Secondly we construct a class of jump processes on a noncompact Cantor set from given pairs of eigenvalues and measures. At the same time, we have concrete expressions of the associated jump kernels and transition densities. Then we construct intrinsic metrics on noncompact Cantor set to obtain estimates of transition densities and jump kernels under some regularity conditions...
For stochastic differential equations of pure jumps, though the Poincaré inequality does not hold in general, we show that W1H transportation inequalities hold for its invariant probability measure and for its process-level law on right continuous paths space in the L1-metric or in uniform metrics, under the dissipative condition. Several applications to concentration inequalities are given.