Page 1

Displaying 1 – 16 of 16

Showing per page

A note on impulsive control of Feller processes with costly information

Dariusz Gątarek (1990)

Aplikace matematiky

The paper deals with the optimal inspections and maintenance problem with costly information for a Markov process with positive discount factor. The associated dynamic programming equation is a quasi-variational inequality with first order differential terms. In this paper we study its different formulations: strong, visousity and evolutionary. The case of impulsive control of purely jump Markov processes is studied as a special case.

A simple approach to functional inequalities for non-local Dirichlet forms

Jian Wang (2014)

ESAIM: Probability and Statistics

With direct and simple proofs, we establish Poincaré type inequalities (including Poincaré inequalities, weak Poincaré inequalities and super Poincaré inequalities), entropy inequalities and Beckner-type inequalities for non-local Dirichlet forms. The proofs are efficient for non-local Dirichlet forms with general jump kernel, and also work for Lp(p> 1) settings. Our results yield a new sufficient condition for fractional Poincaré inequalities, which were recently studied in [P.T. Gressman,...

Adaptive dynamics in logistic branching populations

Nicolas Champagnat, Amaury Lambert (2008)

Banach Center Publications

The biological theory of adaptive dynamics proposes a description of the long-time evolution of an asexual population, based on the assumptions of large population, rare mutations and small mutation steps. Under these assumptions, the evolution of a quantitative dominant trait in an isolated population is described by a deterministic differential equation called 'canonical equation of adaptive dynamics'. In this work, in order to include the effect of genetic drift in this model, we consider instead...

Adding constraints to BSDEs with jumps: an alternative to multidimensional reflections

Romuald Elie, Idris Kharroubi (2014)

ESAIM: Probability and Statistics

This paper is dedicated to the analysis of backward stochastic differential equations (BSDEs) with jumps, subject to an additional global constraint involving all the components of the solution. We study the existence and uniqueness of a minimal solution for these so-called constrained BSDEs with jumps via a penalization procedure. This new type of BSDE offers a nice and practical unifying framework to the notions of constrained BSDEs presented in [S. Peng and M. Xu, Preprint. (2007)] and BSDEs...

Affine Dunkl processes of type A ˜ 1

François Chapon (2012)

Annales de l'I.H.P. Probabilités et statistiques

We introduce the analogue of Dunkl processes in the case of an affine root system of type A ˜ 1 . The construction of the affine Dunkl process is achieved by a skew-product decomposition by means of its radial part and a jump process on the affine Weyl group, where the radial part of the affine Dunkl process is given by a Gaussian process on the ultraspherical hypergroup [ 0 , 1 ] . We prove that the affine Dunkl process is a càdlàg Markov process as well as a local martingale, study its jumps, and give a martingale...

Asymptotic behavior of the hitting time, overshoot and undershoot for some Lévy processes

Bernard Roynette, Pierre Vallois, Agnès Volpi (2008)

ESAIM: Probability and Statistics

Let ( X t , t 0 ) be a Lévy process started at 0 , with Lévy measure ν . We consider the first passage time T x of ( X t , t 0 ) to level x > 0 , and K x : = X T x - 𝑥 the overshoot and L x : = x - X T 𝑥 - the undershoot. We first prove that the Laplace transform of the random triple ( T x , K x , L x ) satisfies some kind of integral equation. Second, assuming that ν admits exponential moments, we show that ( T x ˜ , K x , L x ) converges in distribution as x , where T x ˜ denotes a suitable renormalization of T x .

Asymptotic behavior of the hitting time, overshoot and undershoot for some Lévy processes

Bernard Roynette, Pierre Vallois, Agnès Volpi (2007)

ESAIM: Probability and Statistics

Let (Xt, t ≥ 0) be a Lévy process started at 0, with Lévy measure ν. We consider the first passage time Tx of (Xt, t ≥ 0) to level x > 0, and Kx := XTx - x the overshoot and Lx := x- XTx- the undershoot. We first prove that the Laplace transform of the random triple (Tx,Kx,Lx) satisfies some kind of integral equation. Second, assuming that ν admits exponential moments, we show that ( T x ˜ , K x , L x ) converges in distribution as x → ∞, where T x ˜ denotes a suitable renormalization of Tx.


Currently displaying 1 – 16 of 16

Page 1