On the sample paths of diagonal brownian motions on the infinite dimensional torus
Second order Markov chains which are trajectorially reversible are considered. Contrary to the reversibility notion for usual Markov chains, no symmetry property can be deduced for the corresponding transition operators. Nevertheless and even if they are not diagonalizable in general, we study some features of their spectral decompositions and in particular the behavior of the spectral gap under appropriate perturbations is investigated. Our quantitative and qualitative results confirm that the...
The paper is a contribution to the theory of branching processes with discrete time and a general phase space in the sense of [2]. We characterize the class of regular, i.e. in a sense sufficiently random, branching processes (Φk) k∈Z by almost sure properties of their realizations without making any assumptions about stationarity or existence of moments. This enables us to classify the clans of (Φk) into the regular part and the completely non-regular part. It turns out that the completely non-regular branching...
Let T be a power-bounded linear operator in a real Banach space X. We study the equality (*) . For X separable, we show that if T satisfies and is not uniformly ergodic, then contains an isomorphic copy of an infinite-dimensional dual Banach space. Consequently, if X is separable and does not contain isomorphic copies of infinite-dimensional dual Banach spaces, then (*) is equivalent to uniform ergodicity. As an application, sufficient conditions for uniform ergodicity of irreducible Markov chains...