Displaying 741 – 760 of 2837

Showing per page

Ergodicity for a stochastic geodesic equation in the tangent bundle of the 2D sphere

Ľubomír Baňas, Zdzisław Brzeźniak, Mikhail Neklyudov, Martin Ondreját, Andreas Prohl (2015)

Czechoslovak Mathematical Journal

We study ergodic properties of stochastic geometric wave equations on a particular model with the target being the 2D sphere while considering only solutions which are independent of the space variable. This simplification leads to a degenerate stochastic equation in the tangent bundle of the 2D sphere. Studying this equation, we prove existence and non-uniqueness of invariant probability measures for the original problem and obtain also results on attractivity towards an invariant measure. We also...

Ergodicity of a certain class of non Feller models : applications to 𝐴𝑅𝐶𝐻 and Markov switching models

Jean-Gabriel Attali (2004)

ESAIM: Probability and Statistics

We provide an extension of topological methods applied to a certain class of Non Feller Models which we call Quasi-Feller. We give conditions to ensure the existence of a stationary distribution. Finally, we strengthen the conditions to obtain a positive Harris recurrence, which in turn implies the existence of a strong law of large numbers.

Ergodicity of a certain class of Non Feller Models: Applications to ARCH and Markov switching models

Jean-Gabriel Attali (2010)

ESAIM: Probability and Statistics

We provide an extension of topological methods applied to a certain class of Non Feller Models which we call Quasi-Feller. We give conditions to ensure the existence of a stationary distribution. Finally, we strengthen the conditions to obtain a positive Harris recurrence, which in turn implies the existence of a strong law of large numbers.

Estimates for perturbations of discounted Markov chains on general spaces

Raúl Montes-de-Oca, Alexander Sakhanenko, Francisco Salem-Silva (2003)

Applicationes Mathematicae

We analyse a Markov chain and perturbations of the transition probability and the one-step cost function (possibly unbounded) defined on it. Under certain conditions, of Lyapunov and Harris type, we obtain new estimates of the effects of such perturbations via an index of perturbations, defined as the difference of the total expected discounted costs between the original Markov chain and the perturbed one. We provide an example which illustrates our analysis.

Currently displaying 741 – 760 of 2837