Displaying 81 – 100 of 280

Showing per page

On nearly selfoptimizing strategies for multiarmed bandit problems with controlled arms

Ewa Drabik (1996)

Applicationes Mathematicae

Two kinds of strategies for a multiarmed Markov bandit problem with controlled arms are considered: a strategy with forcing and a strategy with randomization. The choice of arm and control function in both cases is based on the current value of the average cost per unit time functional. Some simulation results are also presented.

On near-optimal necessary and sufficient conditions for forward-backward stochastic systems with jumps, with applications to finance

Mokhtar Hafayed, Petr Veverka, Syed Abbas (2014)

Applications of Mathematics

We establish necessary and sufficient conditions of near-optimality for nonlinear systems governed by forward-backward stochastic differential equations with controlled jump processes (FBSDEJs in short). The set of controls under consideration is necessarily convex. The proof of our result is based on Ekeland's variational principle and continuity in some sense of the state and adjoint processes with respect to the control variable. We prove that under an additional hypothesis, the near-maximum...

On optimal replacement policy

Raimi Ajibola Kasumu, Antonín Lešanovský (1983)

Aplikace matematiky

A system with a single activated unit which can be in k + 1 states is considered. Inspections of the system are carried out at discrete time instants. The process of deterioration of the unit is supposed to be Markovian. The unit by its operation brings an income which is monotonically dependent on its state. A replacement of the unit is associated with certain costs. The paper gives an effective algorithm for finding the replacement strategy maximizing the average income of the system per unit time....

On pathwise uniqueness for stochastic differential equations driven by stable Lévy processes

Nicolas Fournier (2013)

Annales de l'I.H.P. Probabilités et statistiques

We study a one-dimensional stochastic differential equation driven by a stable Lévy process of order α with drift and diffusion coefficients b , σ . When α ( 1 , 2 ) , we investigate pathwise uniqueness for this equation. When α ( 0 , 1 ) , we study another stochastic differential equation, which is equivalent in law, but for which pathwise uniqueness holds under much weaker conditions. We obtain various results, depending on whether α ( 0 , 1 ) or α ( 1 , 2 ) and on whether the driving stable process is symmetric or not. Our assumptions...

Currently displaying 81 – 100 of 280