Displaying 161 – 180 of 309

Showing per page

Stochastic differential equations driven by processes generated by divergence form operators I: a Wong-Zakai theorem

Antoine Lejay (2006)

ESAIM: Probability and Statistics

We show in this article how the theory of “rough paths” allows us to construct solutions of differential equations (SDEs) driven by processes generated by divergence-form operators. For that, we use approximations of the trajectories of the stochastic process by piecewise smooth paths. A result of type Wong-Zakai follows immediately.

Stochastic differential equations driven by processes generated by divergence form operators II: convergence results

Antoine Lejay (2008)

ESAIM: Probability and Statistics

We have seen in a previous article how the theory of “rough paths” allows us to construct solutions of differential equations driven by processes generated by divergence form operators. In this article, we study a convergence criterion which implies that one can interchange the integral with the limit of a family of stochastic processes generated by divergence form operators. As a corollary, we identify stochastic integrals constructed with the theory of rough paths with Stratonovich or Itô integrals...

Stochastic dynamical systems with weak contractivity properties II. Iteration of Lipschitz mappings

Marc Peigné, Wolfgang Woess (2011)

Colloquium Mathematicae

In this continuation of the preceding paper (Part I), we consider a sequence ( F ) n 0 of i.i.d. random Lipschitz mappings → , where is a proper metric space. We investigate existence and uniqueness of invariant measures, as well as recurrence and ergodicity of the induced stochastic dynamical system (SDS) X x = F . . . F ( x ) starting at x ∈ . The main results concern the case when the associated Lipschitz constants are log-centered. Principal tools are local contractivity, as considered in detail in Part I, the Chacon-Ornstein...

Stochastic dynamical systems with weak contractivity properties I. Strong and local contractivity

Marc Peigné, Wolfgang Woess (2011)

Colloquium Mathematicae

Consider a proper metric space and a sequence ( F ) n 0 of i.i.d. random continuous mappings → . It induces the stochastic dynamical system (SDS) X x = F . . . F ( x ) starting at x ∈ . In this and the subsequent paper, we study existence and uniqueness of invariant measures, as well as recurrence and ergodicity of this process. In the present first part, we elaborate, improve and complete the unpublished work of Martin Benda on local contractivity, which merits publicity and provides an important tool for studying stochastic...

Stochastic flow for SDEs with jumps and irregular drift term

Enrico Priola (2015)

Banach Center Publications

We consider non-degenerate SDEs with a β-Hölder continuous and bounded drift term and driven by a Lévy noise L which is of α-stable type. If β > 1 - α/2 and α ∈ [1,2), we show pathwise uniqueness and existence of a stochastic flow. We follow the approach of [Priola, Osaka J. Math. 2012] improving the assumptions on the noise L. In our previous paper L was assumed to be non-degenerate, α-stable and symmetric. Here we can also recover relativistic and truncated stable processes and some classes...

Stochastic harmonic morphisms : functions mapping the paths of one diffusion into the paths of another

Bernt Oksendal, L. Csink (1983)

Annales de l'institut Fourier

We give several necessary and sufficient conditions that a function φ maps the paths of one diffusion into the paths of another. One of these conditions is that φ is a harmonic morphism between the associated harmonic spaces. Another condition constitutes an extension of a result of P. Lévy about conformal invariance of Brownian motion. The third condition implies that two diffusions with the same hitting distributions differ only by a chance of time scale. We also obtain a converse of the above...

Currently displaying 161 – 180 of 309