Page 1 Next

Displaying 1 – 20 of 67

Showing per page

Large deviations for directed percolation on a thin rectangle

Jean-Paul Ibrahim (2011)

ESAIM: Probability and Statistics

Following the recent investigations of Baik and Suidan in [Int. Math. Res. Not. (2005) 325–337] and Bodineau and Martin in [Electron. Commun. Probab. 10 (2005) 105–112 (electronic)], we prove large deviation properties for a last-passage percolation model in ℤ+2 whose paths are close to the axis. The results are mainly obtained when the random weights are Gaussian or have a finite moment-generating function and rely, as in [J. Baik and T.M. Suidan, Int. Math. Res. Not. (2005) 325–337] and [T. Bodineau...

Large deviations for directed percolation on a thin rectangle

Jean-Paul Ibrahim (2012)

ESAIM: Probability and Statistics

Following the recent investigations of Baik and Suidan in [Int. Math. Res. Not. (2005) 325–337] and Bodineau and Martin in [Electron. Commun. Probab. 10 (2005) 105–112 (electronic)], we prove large deviation properties for a last-passage percolation model in ℤ+2 whose paths are close to the axis. The results are mainly obtained when the random weights are Gaussian or have a finite moment-generating function and rely, as in [J. Baik and T.M. Suidan, Int. Math. Res. Not. (2005) 325–337] and [T. Bodineau...

Large deviations for partition functions of directed polymers in an IID field

Iddo Ben-Ari (2009)

Annales de l'I.H.P. Probabilités et statistiques

Consider the partition function of a directed polymer in ℤd, d≥1, in an IID field. We assume that both tails of the negative and the positive part of the field are at least as light as exponential. It is well known that the free energy of the polymer is equal to a deterministic constant for almost every realization of the field and that the upper tail of the large deviations is exponential. The lower tail of the large deviations is typically lighter than exponential. In this paper we obtain sharp...

Large deviations for transient random walks in random environment on a Galton–Watson tree

Elie Aidékon (2010)

Annales de l'I.H.P. Probabilités et statistiques

Consider a random walk in random environment on a supercritical Galton–Watson tree, and let τn be the hitting time of generation n. The paper presents a large deviation principle for τn/n, both in quenched and annealed cases. Then we investigate the subexponential situation, revealing a polynomial regime similar to the one encountered in one dimension. The paper heavily relies on estimates on the tail distribution of the first regeneration time.

Large deviations for voter model occupation times in two dimensions

G. Maillard, T. Mountford (2009)

Annales de l'I.H.P. Probabilités et statistiques

We study the decay rate of large deviation probabilities of occupation times, up to time t, for the voter model η: ℤ2×[0, ∞)→{0, 1} with simple random walk transition kernel, starting from a Bernoulli product distribution with density ρ∈(0, 1). In [Probab. Theory Related Fields77 (1988) 401–413], Bramson, Cox and Griffeath showed that the decay rate order lies in [log(t), log2(t)]. In this paper, we establish the true decay rates depending on the level. We show that the decay rates are log2(t) when...

Large population limit and time behaviour of a stochastic particle model describing an age-structured population

Viet Chi Tran (2008)

ESAIM: Probability and Statistics


We study a continuous-time discrete population structured by a vector of ages. Individuals reproduce asexually, age and die. The death rate takes interactions into account. Adapting the approach of Fournier and Méléard, we show that in a large population limit, the microscopic process converges to the measure-valued solution of an equation that generalizes the McKendrick-Von Foerster and Gurtin-McCamy PDEs in demography. The large deviations associated with this convergence are studied. The upper-bound...

Large scale behavior of semiflexible heteropolymers

Francesco Caravenna, Giambattista Giacomin, Massimiliano Gubinelli (2010)

Annales de l'I.H.P. Probabilités et statistiques

We consider a general discrete model for heterogeneous semiflexible polymer chains. Both the thermal noise and the inhomogeneous character of the chain (the disorder) are modeled in terms of random rotations. We focus on the quenched regime, i.e., the analysis is performed for a given realization of the disorder. Semiflexible models differ substantially from random walks on short scales, but on large scales a brownian behavior emerges. By exploiting techniques from tensor analysis and non-commutative...

Currently displaying 1 – 20 of 67

Page 1 Next