Displaying 101 – 120 of 265

Showing per page

How the result of graph clustering methods depends on the construction of the graph

Markus Maier, Ulrike von Luxburg, Matthias Hein (2013)

ESAIM: Probability and Statistics

We study the scenario of graph-based clustering algorithms such as spectral clustering. Given a set of data points, one first has to construct a graph on the data points and then apply a graph clustering algorithm to find a suitable partition of the graph. Our main question is if and how the construction of the graph (choice of the graph, choice of parameters, choice of weights) influences the outcome of the final clustering result. To this end we study the convergence of cluster quality measures...

How to get Central Limit Theorems for global errors of estimates

Alain Berlinet (1999)

Applications of Mathematics

The asymptotic behavior of global errors of functional estimates plays a key role in hypothesis testing and confidence interval building. Whereas for pointwise errors asymptotic normality often easily follows from standard Central Limit Theorems, global errors asymptotics involve some additional techniques such as strong approximation, martingale theory and Poissonization. We review these techniques in the framework of density estimation from independent identically distributed random variables,...

Irregular sampling and central limit theorems for power variations : the continuous case

Takaki Hayashi, Jean Jacod, Nakahiro Yoshida (2011)

Annales de l'I.H.P. Probabilités et statistiques

In the context of high frequency data, one often has to deal with observations occurring at irregularly spaced times, at transaction times for example in finance. Here we examine how the estimation of the squared or other powers of the volatility is affected by irregularly spaced data. The emphasis is on the kind of assumptions on the sampling scheme which allow to provide consistent estimators, together with an associated central limit theorem, and especially when the sampling scheme depends on...

Kernel estimators and the Dvoretzky-Kiefer-Wolfowitz inequality

Ryszard Zieliński (2007)

Applicationes Mathematicae

It turns out that for standard kernel estimators no inequality like that of Dvoretzky-Kiefer-Wolfowitz can be constructed, and as a result it is impossible to answer the question of how many observations are needed to guarantee a prescribed level of accuracy of the estimator. A remedy is to adapt the bandwidth to the sample at hand.

Least-squares trigonometric regression estimation

Waldemar Popiński (1999)

Applicationes Mathematicae

The problem of nonparametric function fitting using the complete orthogonal system of trigonometric functions e k , k=0,1,2,..., for the observation model y i = f ( x i n ) + η i , i=1,...,n, is considered, where η i are uncorrelated random variables with zero mean value and finite variance, and the observation points x i n [ 0 , 2 π ] , i=1,...,n, are equidistant. Conditions for convergence of the mean-square prediction error ( 1 / n ) i = 1 n E ( f ( x i n ) - f ^ N ( n ) ( x i n ) ) 2 , the integrated mean-square error E f - f ^ N ( n ) 2 and the pointwise mean-square error E ( f ( x ) - N ( n ) ( x ) ) 2 of the estimator f ^ N ( n ) ( x ) = k = 0 N ( n ) c ^ k e k ( x ) for f ∈ C[0,2π] and...

Local linear estimation of conditional cumulative distribution function in the functional data: Uniform consistency with convergence rates

Chaima Hebchi, Abdelhak Chouaf (2021)

Kybernetika

In this paper, we investigate the problem of the conditional cumulative of a scalar response variable given a random variable taking values in a semi-metric space. The uniform almost complete consistency of this estimate is stated under some conditions. Moreover, as an application, we use the obtained results to derive some asymptotic properties for the local linear estimator of the conditional quantile.

Local polynomial estimation of the mean function and its derivatives based on functional data and regular designs

Karim Benhenni, David Degras (2014)

ESAIM: Probability and Statistics

We study the estimation of the mean function of a continuous-time stochastic process and its derivatives. The covariance function of the process is assumed to be nonparametric and to satisfy mild smoothness conditions. Assuming that n independent realizations of the process are observed at a sampling design of size N generated by a positive density, we derive the asymptotic bias and variance of the local polynomial estimator as n,N increase to infinity. We deduce optimal sampling densities, optimal...

Local superefficiency of data-driven projection density estimators in continuous time.

Denis Bosq, Delphine Blanke (2004)

SORT

We construct a data-driven projection density estimator for continuous time processes. This estimator reaches superoptimal rates over a class F0 of densities that is dense in the family of all possible densities, and a «reasonable» rate elsewhere. The class F0 may be chosen previously by the analyst. Results apply to Rd-valued processes and to N-valued processes. In the particular case where square-integrable local time does exist, it is shown that our estimator is strictly better than the local...

Currently displaying 101 – 120 of 265