Displaying 101 – 120 of 194

Showing per page

On the convergence of extreme distributions under power normalization

E. M. Nigm (2008)

Applicationes Mathematicae

This paper deals with the convergence in distribution of the maximum of n independent and identically distributed random variables under power normalization. We measure the difference between the actual and asymptotic distributions in terms of the double-log scale. The error committed when replacing the actual distribution of the maximum under power normalization by its asymptotic distribution is studied, assuming that the cumulative distribution function of the random variables is known. Finally,...

On the distributions of R m n + ( j ) and ( D m n + , R m n + ( j ) )

Jagdish Saran, Kanwar Sen (1982)

Aplikace matematiky

The contents of the paper is concerned with the two-sample problem where F m ( x ) and G n ( x ) are two empirical distribution functions. The difference F m ( x ) - G n ( x ) changes only at an x i , i = 1 , 2 , ... , m + n , corresponding to one of the observations. Let R m n + ( j ) denote the subscript i for which F m ( x i ) - G n ( x i ) achieves its maximum value D m n + for the j th time ( j = 1 , 2 , ... ) . The paper deals with the probabilities for R m n + ( j ) and for the vector ( D m n + , R m n + ( j ) ) under H 0 : F = G , thus generalizing the results of Steck-Simmons (1973). These results have been derived by applying the random walk model.

On the Mathematical Theory of Records

Alexei Stepanov (2021)

Communications in Mathematics

In the present work, we briefly analyze the development of the mathematical theory of records. We first consider applications associated with records. We then view distributional and limit results for record values and times. We further present methods of generation of continuous records. In the end of this work, we discuss some tests based on records.

On the minimizing point of the incorrectly centered empirical process and its limit distribution in nonregular experiments

Dietmar Ferger (2005)

ESAIM: Probability and Statistics

Let F n be the empirical distribution function (df) pertaining to independent random variables with continuous df F . We investigate the minimizing point τ ^ n of the empirical process F n - F 0 , where F 0 is another df which differs from F . If F and F 0 are locally Hölder-continuous of order α at a point τ our main result states that n 1 / α ( τ ^ n - τ ) converges in distribution. The limit variable is the almost sure unique minimizing point of a two-sided time-transformed homogeneous Poisson-process with a drift. The time-transformation...

On the minimizing point of the incorrectly centered empirical process and its limit distribution in nonregular experiments

Dietmar Ferger (2010)

ESAIM: Probability and Statistics

Let Fn be the empirical distribution function (df) pertaining to independent random variables with continuous df F. We investigate the minimizing point τ ^ n of the empirical process Fn - F0, where F0 is another df which differs from F. If F and F0 are locally Hölder-continuous of order α at a point τ our main result states that n 1 / α ( τ ^ n - τ ) converges in distribution. The limit variable is the almost sure unique minimizing point of a two-sided time-transformed homogeneous Poisson-process with a drift. The time-transformation...

On the optimality of the max-depth and max-rank classifiers for spherical data

Ondřej Vencálek, Houyem Demni, Amor Messaoud, Giovanni C. Porzio (2020)

Applications of Mathematics

The main goal of supervised learning is to construct a function from labeled training data which assigns arbitrary new data points to one of the labels. Classification tasks may be solved by using some measures of data point centrality with respect to the labeled groups considered. Such a measure of centrality is called data depth. In this paper, we investigate conditions under which depth-based classifiers for directional data are optimal. We show that such classifiers are equivalent to the Bayes...

One Bootstrap suffices to generate sharp uniform bounds in functional estimation

Paul Deheuvels (2011)

Kybernetika

We consider, in the framework of multidimensional observations, nonparametric functional estimators, which include, as special cases, the Akaike–Parzen–Rosenblatt kernel density estimators ([1, 18, 20]), and the Nadaraya–Watson kernel regression estimators ([16, 22]). We evaluate the sup-norm, over a given set 𝐈 , of the difference between the estimator and a non-random functional centering factor (which reduces to the estimator mean for kernel density estimation). We show that, under suitable general...

Currently displaying 101 – 120 of 194