Displaying 341 – 360 of 1021

Showing per page

Estimation of the density of a determinantal process

Yannick Baraud (2013)

Confluentes Mathematici

We consider the problem of estimating the density Π of a determinantal process N from the observation of n independent copies of it. We use an aggregation procedure based on robust testing to build our estimator. We establish non-asymptotic risk bounds with respect to the Hellinger loss and deduce, when n goes to infinity, uniform rates of convergence over classes of densities Π of interest.

Estimation of the hazard function in a semiparametric model with covariate measurement error

Marie-Laure Martin-Magniette, Marie-Luce Taupin (2009)

ESAIM: Probability and Statistics

We consider a failure hazard function, conditional on a time-independent covariate Z, given by η γ 0 ( t ) f β 0 ( Z ) . The baseline hazard function η γ 0 and the relative risk f β 0 both belong to parametric families with θ 0 = ( β 0 , γ 0 ) m + p . The covariate Z has an unknown density and is measured with an error through an additive error model U = Z + ε where ε is a random variable, independent from Z, with known density f ε . We observe a n-sample (Xi, Di, Ui), i = 1, ..., n, where Xi is the minimum between the failure time and the censoring time, and...

Estimation of the transition density of a Markov chain

Mathieu Sart (2014)

Annales de l'I.H.P. Probabilités et statistiques

We present two data-driven procedures to estimate the transition density of an homogeneous Markov chain. The first yields a piecewise constant estimator on a suitable random partition. By using an Hellinger-type loss, we establish non-asymptotic risk bounds for our estimator when the square root of the transition density belongs to possibly inhomogeneous Besov spaces with possibly small regularity index. Some simulations are also provided. The second procedure is of theoretical interest and leads...

Estimator selection in the gaussian setting

Yannick Baraud, Christophe Giraud, Sylvie Huet (2014)

Annales de l'I.H.P. Probabilités et statistiques

We consider the problem of estimating the mean f of a Gaussian vector Y with independent components of common unknown variance σ 2 . Our estimation procedure is based on estimator selection. More precisely, we start with an arbitrary and possibly infinite collection 𝔽 of estimators of f based on Y and, with the same data Y , aim at selecting an estimator among 𝔽 with the smallest Euclidean risk. No assumptions on the estimators are made and their dependencies with respect to Y may be unknown. We establish...

Estimators of g-monotone dependence functions

Andrzej Krajka (1998)

Applicationes Mathematicae

The notion of g-monotone dependence function introduced in [4] generalizes the notions of the monotone dependence function and the quantile monotone dependence function defined in [2], [3] and [6]. In this paper we study the asymptotic behaviour of sample g-monotone dependence functions and their strong properties.

Evaluating improvements of records

Tomasz Rychlik (1997)

Applicationes Mathematicae

We evaluate the extreme differences between the consecutive expected record values appearing in an arbitrary i.i.d. sample in the standard deviation units. We also discuss the relevant estimates for parent distributions coming from restricted families and other scale units.

Evaluations of expected generalized order statistics in various scale units

Erhard Cramer, Udo Kamps, Tomasz Rychlik (2002)

Applicationes Mathematicae

We present sharp upper bounds for the deviations of expected generalized order statistics from the population mean in various scale units generated by central absolute moments. No restrictions are imposed on the parameters of the generalized order statistics model. The results are derived by combining the unimodality property of the uniform generalized order statistics with the Moriguti and Hölder inequalities. They generalize evaluations for specific models of ordered observations.

Exact adaptive pointwise estimation on Sobolev classes of densities

Cristina Butucea (2001)

ESAIM: Probability and Statistics

The subject of this paper is to estimate adaptively the common probability density of n independent, identically distributed random variables. The estimation is done at a fixed point x 0 , over the density functions that belong to the Sobolev class W n ( β , L ) . We consider the adaptive problem setup, where the regularity parameter β is unknown and varies in a given set B n . A sharp adaptive estimator is obtained, and the explicit asymptotical constant, associated to its rate of convergence is found.

Exact adaptive pointwise estimation on Sobolev classes of densities

Cristina Butucea (2010)

ESAIM: Probability and Statistics

The subject of this paper is to estimate adaptively the common probability density of n independent, identically distributed random variables. The estimation is done at a fixed point x 0 , over the density functions that belong to the Sobolev class Wn(β,L). We consider the adaptive problem setup, where the regularity parameter β is unknown and varies in a given set Bn. A sharp adaptive estimator is obtained, and the explicit asymptotical constant, associated to its rate of convergence is found.

Exact laws for sums of ratios of order statistics from the Pareto distribution

André Adler (2006)

Open Mathematics

Consider independent and identically distributed random variables {X nk, 1 ≤ k ≤ m, n ≤ 1} from the Pareto distribution. We select two order statistics from each row, X n(i) ≤ X n(j), for 1 ≤ i < j ≤ = m. Then we test to see whether or not Laws of Large Numbers with nonzero limits exist for weighted sums of the random variables R ij = X n(j)/X n(i).

Exact slopes of the rank statistics for the two-sample case under discrete distributions

Dana Vorlíčková (1981)

Aplikace matematiky

The author studies the linear rank statistics for testing the pypothesis of randomness against the alternative of two samples provided both are drawn grom discrete (integer-valued) distributions. The weak law of large numbers and the exact slope are obtained for statistics with randomized ranks of with averaged scores.

Explicit Karhunen-Loève expansions related to the Green function of the Laplacian

J.-R. Pycke (2006)

Banach Center Publications

Karhunen-Loève expansions of Gaussian processes have numerous applications in Probability and Statistics. Unfortunately the set of Gaussian processes with explicitly known spectrum and eigenfunctions is narrow. An interpretation of three historical examples enables us to understand the key role of the Laplacian. This allows us to extend the set of Gaussian processes for which a very explicit Karhunen-Loève expansion can be derived.

Currently displaying 341 – 360 of 1021