Displaying 521 – 540 of 1021

Showing per page

Nonparametric estimation of the density of the alternative hypothesis in a multiple testing setup. Application to local false discovery rate estimation

Van Hanh Nguyen, Catherine Matias (2014)

ESAIM: Probability and Statistics

In a multiple testing context, we consider a semiparametric mixture model with two components where one component is known and corresponds to the distribution of p-values under the null hypothesis and the other component f is nonparametric and stands for the distribution under the alternative hypothesis. Motivated by the issue of local false discovery rate estimation, we focus here on the estimation of the nonparametric unknown component f in the mixture, relying on a preliminary estimator of the...

Nonparametric estimation of the derivatives of the stationary density for stationary processes

Emeline Schmisser (2013)

ESAIM: Probability and Statistics

In this article, our aim is to estimate the successive derivatives of the stationary density f of a strictly stationary and β-mixing process (Xt)t≥0. This process is observed at discrete times t = 0,Δ,...,nΔ. The sampling interval Δ can be fixed or small. We use a penalized least-square approach to compute adaptive estimators. If the derivative f(j)belongs to the Besov space B 2 , α B 2 , ∞ α , then our estimator converges at rate (nΔ)−α/(2α+2j+1). Then we consider a diffusion with known diffusion coefficient....

Nonparametric estimation of the jump rate for non-homogeneous marked renewal processes

Romain Azaïs, François Dufour, Anne Gégout-Petit (2013)

Annales de l'I.H.P. Probabilités et statistiques

This paper is devoted to the nonparametric estimation of the jump rate and the cumulative rate for a general class of non-homogeneous marked renewal processes, defined on a separable metric space. In our framework, the estimation needs only one observation of the process within a long time. Our approach is based on a generalization of the multiplicative intensity model, introduced by Aalen in the seventies. We provide consistent estimators of these two functions, under some assumptions related to...

Nonparametric estimation: the survival function.

Alfonso García Pérez (1984)

Trabajos de Estadística e Investigación Operativa

The unknown survival function S(t) of a random variable T ≥ 0 is considered. First we study the properties of S(t) and then, we estimate it from a Bayesian point of view. We compare the estimator with the posterior mean and we finish giving Bayes rules for linear functions of S(t).

Nonparametric estimations of non-negative random variables distributions

František Vávra, Pavel Nový, Hana Mašková, Michala Kotlíková, David Zmrhal (2003)

Kybernetika

The problem of estimation of distribution functions or fractiles of non- negative random variables often occurs in the tasks of risk evaluation. There are many parametric models, however sometimes we need to know also some information about the shape and the type of the distribution. Unfortunately, classical approaches based on kernel approximations with a symmetric kernel do not give any guarantee of non-negativity for the low number of observations. In this note a heuristic approach, based on...

Nonparametric inference for discretely sampled Lévy processes

Shota Gugushvili (2012)

Annales de l'I.H.P. Probabilités et statistiques

Given a sample from a discretely observed Lévy process X = (Xt)t≥0 of the finite jump activity, the problem of nonparametric estimation of the Lévy density ρ corresponding to the process X is studied. An estimator of ρ is proposed that is based on a suitable inversion of the Lévy–Khintchine formula and a plug-in device. The main results of the paper deal with upper risk bounds for estimation of ρ over suitable classes of Lévy triplets. The corresponding lower bounds are also discussed.

Nonparametric recursive aggregation process

Elena Tsiporkova, Veselka Boeva (2004)

Kybernetika

In this work we introduce a nonparametric recursive aggregation process called Multilayer Aggregation (MLA). The name refers to the fact that at each step the results from the previous one are aggregated and thus, before the final result is derived, the initial values are subjected to several layers of aggregation. Most of the conventional aggregation operators, as for instance weighted mean, combine numerical values according to a vector of weights (parameters). Alternatively, the MLA operators...

Nonparametric regression estimation based on spatially inhomogeneous data: minimax global convergence rates and adaptivity

Anestis Antoniadis, Marianna Pensky, Theofanis Sapatinas (2014)

ESAIM: Probability and Statistics

We consider the nonparametric regression estimation problem of recovering an unknown response function f on the basis of spatially inhomogeneous data when the design points follow a known density g with a finite number of well-separated zeros. In particular, we consider two different cases: when g has zeros of a polynomial order and when g has zeros of an exponential order. These two cases correspond to moderate and severe data losses, respectively. We obtain asymptotic (as the sample size increases)...

Normality assumption for the log-return of the stock prices

Pedro P. Mota (2012)

Discussiones Mathematicae Probability and Statistics

The normality of the log-returns for the price of the stocks is one of the most important assumptions in mathematical finance. Usually is assumed that the price dynamics of the stocks are driven by geometric Brownian motion and, in that case, the log-return of the prices are independent and normally distributed. For instance, for the Black-Scholes model and for the Black-Scholes pricing formula [4] this is one of the main assumptions. In this paper we will investigate if this assumption is verified...

Normalization of the Kolmogorov–Smirnov and Shapiro–Wilk tests of normality

Zofia Hanusz, Joanna Tarasińska (2015)

Biometrical Letters

Two very well-known tests for normality, the Kolmogorov-Smirnov and the Shapiro- Wilk tests, are considered. Both of them may be normalized using Johnson’s (1949) SB distribution. In this paper, functions for normalizing constants, dependent on the sample size, are given. These functions eliminate the need to use non-standard statistical tables with normalizing constants, and make it easy to obtain p-values for testing normality.

Currently displaying 521 – 540 of 1021